Journal of Traditional Chinese Medicine ›› 2025, Vol. 45 ›› Issue (3): 538-551.DOI: 10.19852/j.cnki.jtcm.2025.03.010
Previous Articles Next Articles
SHI Cheng1, CHEN Jian2, ZHANG Yufang3, GAO Ya3, LI Dantong3, YUE Shijun3(
), ZHANG Yixin4(
)
Received:2024-07-27
Accepted:2024-11-02
Online:2025-06-15
Published:2025-05-21
Contact:
Prof. YUE Shijun, Department of Clinical Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China. shijun_yue@163.com;Prof. ZHANG Yixin, Department of Clinical Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China. hbzyx123@163.com,Telephone: +86-18732109076
About author:SHI Cheng and CHEN Jian are co-first authors and contributed equally to this work
Supported by:SHI Cheng, CHEN Jian, ZHANG Yufang, GAO Ya, LI Dantong, YUE Shijun, ZHANG Yixin. Protective effect of Dan Ze mixture (丹泽合剂) against lipotoxic cardiomyopathy through activating B-cell lymphoma-2 adenovirus E1B 19 kDa-interacting protein 3/mitophagy signaling pathway[J]. Journal of Traditional Chinese Medicine, 2025, 45(3): 538-551.
Figure 1 DZM alleviated myocardial injury and fibrosis, reduced myocardial cell apoptosis and inhibited oxidative damage A: HE staining of myocardial tissue (× 200). A1: control group; A2: model group; A3: Ator group; A4: L-DZM group; A5: M-DZM group; A6: H-DZM group; B: Masson staining of myocardial tissue (× 200). B1: control group; B2: model group; B3: Ator group; B4: L-DZM group; B5: M-DZM group; B6: H-DZM group; C: oil O staining of myocardial tissue (× 200). C1: control group; C2: model group; C3: Ator group; C4: L-DZM group; C5: M-DZM group; C6: H-DZM group; D: TUNEL staining of myocardial tissue (× 200). D1: control group; D2: model group; D3: Ator group; D4: L-DZM group; D5: M-DZM group; D6: H-DZM group; E: Western blot analysis of Bcl-2 and Bax in rats. F: Bcl-2 and Bax mRNA expression were detected by qRT-PCR. F1: Bcl-2 mRNA; F2: Bax mRNA. G: ROS fluorescence staining in myocardial tissue (× 400). G1: control group; G2: model group; G3: Ator group; G4: L-DZM group; G5: M-DZM group; G6: H-DZM group. Control group: gavage of normal saline; Model group: high fat feed for 26 weeks + gavage of normal saline for 6 weeks; Ator group: high fat feed + gavage of Ator (2.1 g/kg) for 6 weeks; L-DZM group: high fat feed + gavage of DZM (6.3 g/kg) for 6 weeks ; M-DZM group: high fat feed 26 weeks + gavage of DZM (12.6 g/kg) for 6 weeks; H-DZM group: high fat feed 26 weeks + gavage of DZM (25.2 g/kg) for 6 weeks. DZM: Dan Ze mixture; HE: hematoxylin and eosin; Ator: atorvastatin; L-DZM: low dose of DZM; M-DZM: middle dose of DZM; H-DZM: high dose of DZM; TUNEL: terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling; Bcl-2: B-cell lymphoma-2; Bax: Bcl-2-associated X. GAPDH: glyceraldehyde-3-phosphatedehydrogenase; ROS: reactive oxygen species. One-way analysis of variance tests were used among these groups. Data were shown as the mean ± standard error of mean (n = 8). Compared with control group, aP < 0.05; compared with model group, bP < 0.05; compared with Ator group, cP < 0.05; compared with L-DZM group, dP < 0.05; compared with M-DZM group, eP < 0.05.
| Group | n | CK | CK-MB | LDH | α-HBDH |
|---|---|---|---|---|---|
| Control | 8 | 1041±45 | 772±31 | 647±14 | 216±6 |
| Model | 8 | 2276±60a | 1196±16a | 974±25a | 419±4a |
| Ator | 8 | 1075±74b | 951±27b | 643±24b | 242±8b |
| L-DZM | 8 | 1484±35bc | 919±19b | 795±17bc | 311±5bc |
| M-DZM | 8 | 1228±70bd | 839±35bc | 737±14b | 292±6bc |
| H-DZM | 8 | 1138±27bd | 740±20bcd | 555±35bde | 265±12bd |
Table 1 Effect of DZM on serum myocardial enzymes in rats with lipotoxic cardiomyopathy (U/L)
| Group | n | CK | CK-MB | LDH | α-HBDH |
|---|---|---|---|---|---|
| Control | 8 | 1041±45 | 772±31 | 647±14 | 216±6 |
| Model | 8 | 2276±60a | 1196±16a | 974±25a | 419±4a |
| Ator | 8 | 1075±74b | 951±27b | 643±24b | 242±8b |
| L-DZM | 8 | 1484±35bc | 919±19b | 795±17bc | 311±5bc |
| M-DZM | 8 | 1228±70bd | 839±35bc | 737±14b | 292±6bc |
| H-DZM | 8 | 1138±27bd | 740±20bcd | 555±35bde | 265±12bd |
| Group | n | LVEDd (mm) | LVEDs (mm) | EF (%) | FS (%) |
|---|---|---|---|---|---|
| Control | 3 | 7.36±0.08 | 3.16±0.15 | 85.63±1.14 | 57.19±1.70 |
| Model | 3 | 8.17±0.16a | 4.73±0.15a | 69.76±1.17a | 38.88±1.02a |
| Ator | 3 | 7.15±0.12b | 3.94±0.06b | 76.43±0.76b | 46.19±0.64b |
| L-DZM | 3 | 8.07±0.27 | 4.38±0.25 | 74.85±2.13 | 46.06±1.89b |
| M-DZM | 3 | 7.82±0.20 | 4.44±0.20 | 74.93±2.11 | 46.15±1.94b |
| H-DZM | 3 | 7.01±0.09b | 3.73±0.10b | 79.28±0.86b | 46.79±1.02b |
Table 2 Effect of DZM on cardiac function of rats with lipotoxic cardiomyopathy
| Group | n | LVEDd (mm) | LVEDs (mm) | EF (%) | FS (%) |
|---|---|---|---|---|---|
| Control | 3 | 7.36±0.08 | 3.16±0.15 | 85.63±1.14 | 57.19±1.70 |
| Model | 3 | 8.17±0.16a | 4.73±0.15a | 69.76±1.17a | 38.88±1.02a |
| Ator | 3 | 7.15±0.12b | 3.94±0.06b | 76.43±0.76b | 46.19±0.64b |
| L-DZM | 3 | 8.07±0.27 | 4.38±0.25 | 74.85±2.13 | 46.06±1.89b |
| M-DZM | 3 | 7.82±0.20 | 4.44±0.20 | 74.93±2.11 | 46.15±1.94b |
| H-DZM | 3 | 7.01±0.09b | 3.73±0.10b | 79.28±0.86b | 46.79±1.02b |
| Group | n | TC | TG | LDL | FFA | HDL |
|---|---|---|---|---|---|---|
| Control | 8 | 1.547±0.076 | 0.126±0.004 | 0.503±0.017 | 212.500±14.130 | 0.900±0.045 |
| Model | 8 | 2.325±0.050a | 0.846±0.008a | 1.595±0.078a | 443.100±17.660a | 0.466±0.016a |
| Ator | 8 | 1.636±0.066b | 0.152±0.005b | 0.742±0.036b | 288.500±23.670b | 0.751±0.025b |
| L-DZM | 8 | 1.837±0.025b | 0.205±0.013bd | 0.940±0.018bd | 316.600±14.070b | 0.614±0.015bd |
| M-DZM | 8 | 1.614±0.056b | 0.146±0.008bc | 0.852±0.016b | 285.100±7.974b | 0.664±0.022b |
| H-DZM | 8 | 1.540±0.033bc | 0.125±0.003bc | 0.637±0.011bce | 210.200±9.895bcde | 0.898±0.021bcde |
Table 3 Effect of DZM on blood lipid in rats with lipotoxic cardiomyopathy (mmol/L)
| Group | n | TC | TG | LDL | FFA | HDL |
|---|---|---|---|---|---|---|
| Control | 8 | 1.547±0.076 | 0.126±0.004 | 0.503±0.017 | 212.500±14.130 | 0.900±0.045 |
| Model | 8 | 2.325±0.050a | 0.846±0.008a | 1.595±0.078a | 443.100±17.660a | 0.466±0.016a |
| Ator | 8 | 1.636±0.066b | 0.152±0.005b | 0.742±0.036b | 288.500±23.670b | 0.751±0.025b |
| L-DZM | 8 | 1.837±0.025b | 0.205±0.013bd | 0.940±0.018bd | 316.600±14.070b | 0.614±0.015bd |
| M-DZM | 8 | 1.614±0.056b | 0.146±0.008bc | 0.852±0.016b | 285.100±7.974b | 0.664±0.022b |
| H-DZM | 8 | 1.540±0.033bc | 0.125±0.003bc | 0.637±0.011bce | 210.200±9.895bcde | 0.898±0.021bcde |
| Group | n | SOD (U/mgprot) | GSH (μmol/grot) | MDA (μmol/grot-) |
|---|---|---|---|---|
| Control | 8 | 24.29±0.63 | 72.38±1.84 | 22.56±0.98 |
| Model | 8 | 7.33±0.14a | 12.40±0.46a | 85.44±2.60a |
| Ator | 8 | 21.95±0.71b | 62.74±1.76b | 34.34±1.10b |
| L-DZM | 8 | 10.74±0.27bc | 25.71±0.50bc | 66.07±1.32bc |
| M-DZM | 8 | 14.12±0.27bcd | 36.30±0.79bcd | 57.26±1.39bcd |
| H-DZM | 8 | 16.76±0.28bcde | 45.93±0.72bcde | 44.48±0.74bcde |
Table 4 Effect of DZM on SOD, GSH and MDA level in serum of rats with lipotoxic cardiomyopathy
| Group | n | SOD (U/mgprot) | GSH (μmol/grot) | MDA (μmol/grot-) |
|---|---|---|---|---|
| Control | 8 | 24.29±0.63 | 72.38±1.84 | 22.56±0.98 |
| Model | 8 | 7.33±0.14a | 12.40±0.46a | 85.44±2.60a |
| Ator | 8 | 21.95±0.71b | 62.74±1.76b | 34.34±1.10b |
| L-DZM | 8 | 10.74±0.27bc | 25.71±0.50bc | 66.07±1.32bc |
| M-DZM | 8 | 14.12±0.27bcd | 36.30±0.79bcd | 57.26±1.39bcd |
| H-DZM | 8 | 16.76±0.28bcde | 45.93±0.72bcde | 44.48±0.74bcde |
| Group | n | Bcl-2 mRNA | Bax mRNA |
|---|---|---|---|
| Control | 8 | 1.001±0.015 | 1.001±0.011 |
| Model | 8 | 0.565±0.022a | 1.537±0.056a |
| DZM | 8 | 1.689±0.036b | 0.331±0.012b |
| DZM+si-BNIP3 | 8 | 1.026±0.046bc | 0.647±0.042bc |
| Si-BNIP3 | 8 | 0.648±0.021cd | 1.661±0.031cd |
Table 5 Effect of DZM on apoptosis-related gene in PA-induced H9c2 cell
| Group | n | Bcl-2 mRNA | Bax mRNA |
|---|---|---|---|
| Control | 8 | 1.001±0.015 | 1.001±0.011 |
| Model | 8 | 0.565±0.022a | 1.537±0.056a |
| DZM | 8 | 1.689±0.036b | 0.331±0.012b |
| DZM+si-BNIP3 | 8 | 1.026±0.046bc | 0.647±0.042bc |
| Si-BNIP3 | 8 | 0.648±0.021cd | 1.661±0.031cd |
Figure 2 DZM improved the mitochondria structure and function of myocardial tissue and enhanced mitochondrial autophagy A: myocardial tissue and mitochondrial ultrastructure were detected by transmission electron microscope (× 2500). A1: control group; A2: model group; A3: Ator group; A4: L-DZM group; A5: M-DZM group; A6: H-DZM group; B: JC-1 of mitochondrial membrane potential. B1: control group; B2: model group; B3: Ator group; B4: L-DZM group; B5: M-DZM group; B6: H-DZM group; C: Myocardial tissue immunofluorescence co-localization of LC3 and PHB2 (× 400). C1: LC3 fluorescent staining in normal group; C2: PHB2 fluorescent staining in normal group C3: Nuclear fluorescence staining in normal group C4: immunofluorescence co-localization of LC3 and PHB2 in normal group; C5: LC3 fluorescent staining in model group; C6: PHB2 fluorescent staining in model group; C7: Nuclear fluorescence staining in model group; C8: immunofluorescence co-localization of LC3 and PHB2 in model group; C9: LC3 fluorescent staining in Ator group; C10: PHB2 fluorescent staining in Ator group; C11: Nuclear fluorescence staining in Ator group; C12: immunofluorescence co-localization of LC3 and PHB2 in Ator group; C13: LC3 fluorescent staining in L-DZM group; C14: PHB2 fluorescent staining in L-DZM group; C15: Nuclear fluorescence staining in L-DZM group; C16: immunofluorescence co-localization of LC3 and PHB2 in L-DZM group; C17: LC3 fluorescent staining in M-DZM group; C18: PHB2 fluorescent staining in M-DZM group; C19: Nuclear fluorescence staining in M-DZM group; C20: immunofluorescence co-localization of LC3 and PHB2 in M-DZM group; C21: LC3 fluorescent staining in M-DZM group; C22: PHB2 fluorescent staining in M-DZM group; C23: Nuclear fluorescence staining in M-DZM group; C24: immunofluorescence co-localization of LC3 and PHB2 in M-DZM group. Control group: gavage of normal saline; Model group: high fat feed for 26 weeks + gavage of normal saline for 6 weeks; Ator group: high fat feed + gavage of Ator (2.1 g/kg) for 6 weeks; L-DZM group: high fat feed + gavage of DZM (6.3 g/kg) for 6 weeks ; M-DZM group: high fat feed 26 weeks + gavage of DZM (12.6 g/kg) for 6 weeks; H-DZM group: high fat feed 26 weeks + gavage of DZM (25.2 g/kg) for 6 weeks. DZM: Dan Ze mixture; Ator: Atorvastatin; L-DZM: low dose of DZM; M-DZM: middle dose of DZM; H-DZM: high dose of DZM; LC3: L Chain 3; PHB2: prohibitin 2; JC-1: 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide.
Figure 3 DZM regulates the positive expression of mitochondrial autophagy related proteins and the expression of BNIP3/ mitochondrial autophagy pathway related genes and proteins A: myocardial tissue immunofluorescence staining of p62 (× 400). A1: control group; A2: model group; A3: Ator group; A4: L-DZM group; A5: M-DZM group; A6: H-DZM group; B: myocardial tissue immunofluorescence staining of Tom20 (× 400). B1: control group; B2: model group; B3: Ator group; B4: L-DZM group; B5: M-DZM group; B6: H-DZM group; C: myocardial tissue immunofluorescence staining of HSP60 (× 400). C1: control group; C2: model group; C3: Ator group; C4: L-DZM group; C5: M-DZM group; C6: H-DZM group; D: myocardial tissue immunofluorescence staining of PHB2 (× 400). D1: control group; D2: model group; D3: Ator group; D4: L-DZM group; D5: M-DZM group; D6: H-DZM group; E: BNIP3/ mitochondrial autophagy pathway related proteins. F: BNIP3/ mitochondrial autophagy pathway related genes. F1: BNIP3 mRNA; F2: Beclin-1 mRNA; F3: p62 mRNA; F4: LC3 mRNA; F5: PHB2 mRNA. Control group: gavage of normal saline; Model group: high fat feed for 26 weeks + gavage of normal saline for 6 weeks; Ator group: high fat feed + gavage of Ator (2.1 g/kg) for 6 weeks; L-DZM group: high fat feed + gavage of DZM (6.3 g/kg) for 6 weeks ; M-DZM group: high fat feed 26 weeks + gavage of DZM (12.6 g/kg) for 6 weeks; H-DZM group: high fat feed 26 weeks + gavage of DZM (25.2 g/kg) for 6 weeks. DZM: Dan Ze mixture; Ator: atorvastatin; L-DZM: low dose of DZM; M-DZM: middle dose of DZM; H-DZM: high dose of DZM; BNIP3: B-cell lymphoma-2/adenovirus E1B gene 19 kDa protein-interacting protein 3; Beclin-1: myosin-like BCL2 interacting protein; p62: sequestosome-1; LC3: L Chain 3; PHB2: prohibitin 2; Tom20: mitochondrial membrane 20; HSP60: heat shock protein 60. GAPDH: glyceraldehyde-3-phosphatedehydrogenase. One-way analysis of variance tests were used among these groups. Data were shown as the mean ± standard error of mean (n = 3). Compared with control group, aP < 0.05; compared with model group, bP < 0.05; compared with Ator group, cP < 0.05; compared with L-DZM group, dP < 0.05; compared with M-DZM group, eP < 0.05.
Figure 4 DZM improved the accumulation of lipid droplets in H9c2 cells induced by PA, regulated the expression of genes and proteins related to BNIP3/ mitochondrial autophagy pathway, improved mitochondrial structure and function, and alleviated cell apoptosis A: Oil red O staining of H9c2 cells (× 400). A1: control group; A2: model group; A3: DZM group; A4: DZM+si-BNIP3 group; A5: si-BNIP3group. B: BNIP3/ mitochondrial autophagy pathway related proteins. C: H9c2 cell apoptosis was detected by flow cytometry. C1: control group; C2: model group; C3: DZM group; C4: DZM + si-BNIP3 group; C5: si-BNIP3group. D: Western blot analysis of Bcl-2 and Bax. E: PA-induced H9c2 cell mitochondrial ultrastructure and autophagosome count were assessed via transmission electron microscopy (× 5000). E1: control group; E2: model group; E3: DZM group; E4: DZM + si-BNIP3 group; E5: si-BNIP3 group. F: JC-1 of mitochondrial membrane potential. F1: control group; F2: model group; F3: DZM group; F4: DZM + si-BNIP3 group; G5: si-BNIP3group. control group: conventional culture; model group: palmitic acid incubation for 24 h; DZM group: palmitic acid + DZM incubation for 24 h; DZM + si-BNIP3 group: palmitic acid + DZM incubation + Silence the BNIP3 gene expression for 24 h; si-BNIP3group: palmitic acid + Silence the BNIP3 gene expression for 24 h. DZM: Dan Ze mixture medicated serum; Bcl-2: B-cell lymphoma-2; Bax: Bcl-2-Associated X; BNIP3: B-cell lymphoma-2/adenovirus E1B gene 19 kDa protein-interacting protein 3; Beclin-1: myosin-like BCL2 interacting protein; p62: Sequestosome-1; LC3: L Chain 3; PHB2: prohibitin 2; GAPDH: glyceraldehyde-3-phosphatedehydrogenase; JC-1: 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide.
| Group | n | BNIP3 mRNA | Beclin-1 mRNA | P62 mRNA | LC3Ⅱ/Ⅰ mRNA | PHB2 mRNA |
|---|---|---|---|---|---|---|
| Control | 8 | 1.005±0.036 | 1.000±0.012 | 1.000±0.010 | 1.008±0.043 | 1.002±0.021 |
| Model | 8 | 0.651±0.065a | 0.456±0.046a | 1.618±0.053a | 0.447±0.025a | 0.296±0.019a |
| DZM | 8 | 1.905±0.022b | 1.922±0.016b | 0.755±0.049b | 1.443±0.055b | 1.881±0.025b |
| DZM+si-BNIP3 | 8 | 1.226±0.026bc | 1.244±0.025bc | 1.123±0.028bc | 1.154±0.019bc | 1.253±0.032bc |
| Si-BNIP3 | 8 | 0.580±0.018cd | 0.460±0.015cd | 1.853±0.026bcd | 0.270±0.009bcd | 0.340±0.014cd |
Table 6 Effect of DZM on the expression of mitochondrial autophagy related genes in PA-induced H9c2 cell
| Group | n | BNIP3 mRNA | Beclin-1 mRNA | P62 mRNA | LC3Ⅱ/Ⅰ mRNA | PHB2 mRNA |
|---|---|---|---|---|---|---|
| Control | 8 | 1.005±0.036 | 1.000±0.012 | 1.000±0.010 | 1.008±0.043 | 1.002±0.021 |
| Model | 8 | 0.651±0.065a | 0.456±0.046a | 1.618±0.053a | 0.447±0.025a | 0.296±0.019a |
| DZM | 8 | 1.905±0.022b | 1.922±0.016b | 0.755±0.049b | 1.443±0.055b | 1.881±0.025b |
| DZM+si-BNIP3 | 8 | 1.226±0.026bc | 1.244±0.025bc | 1.123±0.028bc | 1.154±0.019bc | 1.253±0.032bc |
| Si-BNIP3 | 8 | 0.580±0.018cd | 0.460±0.015cd | 1.853±0.026bcd | 0.270±0.009bcd | 0.340±0.014cd |
| Group | n | SOD (U/mL) | GSH (mg/L) | MDA (nmol/mL) |
|---|---|---|---|---|
| Control | 8 | 157.80±7.39 | 5.80±0.26 | 1.47±0.06 |
| Model | 8 | 64.82±1.89a | 1.77±0.17a | 3.63±0.07a |
| DZM | 8 | 116.60±3.58b | 4.62±0.26b | 2.04±0.06b |
| DZM+si-BNIP3 | 8 | 91.26±2.51bc | 3.05±0.26#c | 2.72±0.13bc |
| Si-BNIP3 | 8 | 39.66±1.84bcd | 0.73±0.08#cd | 5.11±0.13bcd |
Table 7 Effect of DZM on the level of SOD, MDA and GSH in PA-induced H9c2 cell
| Group | n | SOD (U/mL) | GSH (mg/L) | MDA (nmol/mL) |
|---|---|---|---|---|
| Control | 8 | 157.80±7.39 | 5.80±0.26 | 1.47±0.06 |
| Model | 8 | 64.82±1.89a | 1.77±0.17a | 3.63±0.07a |
| DZM | 8 | 116.60±3.58b | 4.62±0.26b | 2.04±0.06b |
| DZM+si-BNIP3 | 8 | 91.26±2.51bc | 3.05±0.26#c | 2.72±0.13bc |
| Si-BNIP3 | 8 | 39.66±1.84bcd | 0.73±0.08#cd | 5.11±0.13bcd |
| 1. |
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57: 1329-38.
DOI PMID |
| 2. | Nordin N, Majid NA, Hashim NM, Rahman MA, Hassan Z, Ali HM. Liriodenine, an aporphine alkaloid from Enicosanthellum pulchrum, inhibits proliferation of human ovarian cancer cells through induction of apoptosis via the mitoch-ondrial signaling pathway and blocking cell cycle progression. Drug Des Devel Ther 2015; 9: 1437-48. |
| 3. | Dewald O, Sharma S, Adrogue J, et al. Down regulation of peroxisome proliferator-activated receptor-alpha gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species and prevents lipotoxicity. Circulation 2005; 112: 407-15. |
| 4. | Berardi DE, Bock-Hughes A, Terry AR, Drake LE, Bozek G, Macleod KF. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. Sci Adv 2022; 8: eabo2510. |
| 5. |
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol 2020; 76: 2982-3021.
DOI PMID |
| 6. |
Wang B, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis. Arch Toxicol 2023; 97: 1439-51.
DOI PMID |
| 7. |
Zheng P, Ma W, Gu Y, et al. High-fat diet causes mitochondrial damage and down regulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023; 73: 61-76.
DOI PMID |
| 8. |
Tong M, Saito T, Zhai P, et al. Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 2019; 124: 1360-71.
DOI PMID |
| 9. | Lin Q, Li S, Jiang N, et al. Inhibiting NLRP3 inflammasome attenuates apoptosis in contrast-induced acute kidney injury through the upregulation of HIF1A and BNIP3-mediated mitophagy. Autophagy 2021; 17: 2975-90. |
| 10. |
Ni H, Liu R, Zhou Z, Jiang B, Wang B. Parkin enhances sensitivity of paclitaxel to nasopharyngeal carcinoma by activating BNIP3/NIX-mediated mitochondrial autophagy. Chin J Physiol 2023; 66: 503-15.
DOI PMID |
| 11. | Sun LL, Shao YN, You MX, Li CH. ROS-mediated BNIP3-dependent mitophagy promotes coelomocyte survival in Apostichopus japonicus in response to Vibrio splendidus infection. Zool Res 2022; 43: 285-300. |
| 12. | Zhang H, Yin C, Liu X, et al. Prohibitin 2/PHB 2 in parkin-mediated mitophagy: a potential therapeutic target for non-small cell lung carcinoma. Med Sci Monit 2020; 26: e923227. |
| 13. | Chen Y, Fan L, Zhang T, et al. Effectiveness of Zhuling decoction on diuretic resistance in patients with heart failure: a randomized, controlled trial. Zhong Hua Zhong Yi Yao Za Zhi 2022; 42: 439-45. |
| 14. | Wang C, Wu Q, Li P, et al. Effect of Traditional Chinese Medicine combined with Western Medicine on blood lipid levels and inflammatory factors in patients with angina pectoris in coronary heart disease identified as intermingled phlegm and blood stasis syndrome: a network Meta-analysis. Zhong Hua Zhong Yi Yao Za Zhi 2023; 43: 640-49. |
| 15. | Le ZY, Qin X, Fang N, Yu SG. Effects of Rhizoma alismatis decoction on hemodynamics in rats with myocardial ischemia reperfusion injury. Hubei Zhong Yi Yao Da Xue Xue Bao 2012; 14: 3-5. |
| 16. | Li Z, Liu M, Chen M, et al. Clinical effect of Danshen decoction in patients with heart failure: a systematic review and Meta-analysis of randomized controlled trials. PLoS One 2023; 18: e284877. |
| 17. | Liu M, Yanneng X, Yang G, Li Z, Luo G, Yang S. Danshen decoction in the treatment of hyperlipidemia: a systematic review and Meta-analysis protocol of randomized controlled trials. Evid Based Complement Alternat Med 2022; 2022: 2392652. |
| 18. | Biao Y, Chen J, Liu C, et al. Protective effect of Danshen Zexie decoction against non-alcoholic fatty liver disease through inhibition of ROS/NLRP3/IL-1beta pathway by Nrf 2 signaling activation. Front Pharmacol 2022; 13: 877924. |
| 19. | Zhang F, Wu J, Ruan H, et al. Zexie decoction alleviates non-alcoholic fatty liver disease in rats: the study of genes, lipids, and gut microbiotas. Biochem Biophys Res Commun 2022; 632: 129-38. |
| 20. | Li AZ. Clinical efficacy of Zexie decoction in the treatment of hyperlipidemia. Lin Chuang He Li Yong Yao Za Zhi 2018; 11: 114-5. |
| 21. | Wang J, Xu P, Xie X, et al. DBZ (Danshensu Bingpian Zhi), a novel natural compound derivative, attenuates atherosclerosis in apolipoprotein E-deficient mice. J Am Heart Assoc 2017; 6: e006297. |
| 22. | Younis NS. Doxorubicin-induced cardiac abnormalities in rats: attenuation via sandalwood oil. Pharmacology 2020; 105: 522-30. |
| 23. | Wang MY, Gao G, Li EW, et al. Mechanism of Zexie Decoction in improvement of nonalcoholic fatty liver disease based on LKB1/AMPK/PGC-1α pathway. Zhong Guo Zhong Yao Za Zhi 2022; 47: 453-60. |
| 24. | Zhao Y, Shao C, Zhou H, et al. Salvianolic acid B inhibits atherosclerosis and TNF-alpha-induced inflammation by regulating NF-κB/NLRP3 signaling pathway. Phytomedicine 2023; 119: 155002. |
| 25. | Xiong H, Li N, Zhao L, et al. Integrated serum pharmacochemistry, metabolomics, and network pharmacology to reveal the material basis and mechanism of Danggui Shaoyao San in the treatment of primary dysmenorrhea. Front Pharmacol 2022; 13: 942955. |
| 26. |
Chen W, Gong L, Guo Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant 2013; 6: 1769-80.
DOI PMID |
| 27. | Li S, Qian X, Gong J, et al. Exercise training reverses lipotoxicity-induced cardiomyopathy by inhibiting HMGCS2. Med Sci Sports Exerc 2021; 1: 47-57. |
| 28. | Chen Q. Pharmacology Research Methodology of Chinese Medicine (3th edition): People's Medical Publishing House, 2011: 122-3. |
| 29. | Cai XJ, Zhang XH, Wang FW. Curative effect of Danshen decoction on chronic pulmonary heart disease and its influence on blood gas index and heart function. Zhejiang Zhong Yi Yao Da Xue Xue Bao 2015; 50: 555-6. |
| 30. | Yang Z, Chen Y, Yan Z, et al. Inhibition of TLR4/MAPKs pathway contributes to the protection of salvianolic acid a against lipotoxicity-induced myocardial damage in cardiomyocytes and obese mice. Front Pharmacol 2021; 12: 627123. |
| 31. | Xiang Y, Liang X, Bao CY, et al. The role of luteolin in regulating the endoplasmic reticulum stress-mitochondrial apoptosis pathway in lipotoxic myocardial injury. Hubei Zhong Yi Yao Da Xue Xue Bao 2023; 37: 185-9+195+180. |
| 32. | Wang F, Neumann D, Kapsokalyvas D, et al. Specific compounds derived from Traditional Chinese Medicine ameliorate lipid-induced contractile dysfunction in cardiomyocytes. Int J Mol Sci 2024; 25: 8131. |
| 33. | Nakamura M, Liu T, Husain S, et al. Glycogen synthase kinase-3alpha promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab 2019; 29: 1119-34. |
| 34. | Zhou C, Yin X. Wogonin ameliorated obesity-induced lipid metabolism disorders and cardiac injury via suppressing pyroptosis and deactivating IL-17 signaling pathway. Am J Chin Med 2022; 50: 1553-64. |
| 35. | Ren BC, Zhang YF, Liu SS, et al. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 2020; 24: 12355-67. |
| 36. | Yen PT, Huang SE, Hsu JH, et al. Anti-inflammatory and anti-oxidative effects of puerarin in postmenopausal cardioprotection: roles of Akt and heme oxygenase-1. Am J Chin Med 2023; 51: 149-68. |
| 37. | Fu JJ, Duan JK, LI H. The crosstalk between autophagy and apoptosis. Sheng Ming De Hua Xue 2014; 5: 649-53. |
| 38. | Zhang J, Wang Y, Bao C, et al. Curcumin-loaded PEG-PDLLA nanoparticles for attenuating palmitate-induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int J Mol Med 2019; 44: 672-82. |
| 39. |
Chen D, Li X, Zhang L, Zhu M, Gao L. A high-fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J Cell Biochem 2018; 119: 9602.
DOI PMID |
| 40. | Chiu TH, Ku CW, Ho TJ, et al. Schisanhenol attenuates OxLDL-induced endothelial dysfunction via an AMPK-dependent mechanism. Am J Chin Med 2023; 51: 1459-75. |
| 41. |
Shao D, Kolwicz SJ, Wang P, et al. Increasing fatty acid oxidation prevents high-fat diet-induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation 2020; 142: 983-97.
DOI PMID |
| 42. | Zhang Y, Fang Q, Wang H, et al. Increased mitophagy protects cochlear hair cells from aminoglycoside-induced damage. Autophagy 2023; 19: 75-91. |
| 43. | Hsu WT, Chen YH, Yang HB, Lin JG, Hung SY. Electroacupuncture improves motor symptoms of parkinson's disease and promotes neuronal autophagy activity in mouse brain. Am J Chin Med 2020; 48: 1651-69. |
| 44. | Jeong SJ, Zhang X, Rodriguez-Velez A, Evans TD, Razani B. p62/SQSTM1 and selective autophagy in cardiometabolic diseases. Antioxid Redox Signal 2019; 31: 458-71. |
| 45. |
Wei Y, Chiang WC, Sumpter R Jr, Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 2017; 168: 224-38.
DOI PMID |
| 46. | Liu L, Bai F, Song H, Xiao R, et al. Upregulation of TIPE 1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy. Redox Biol 2022; 50: 102260. |
| 47. | Shang C, Liu Z, Zhu Y, et al. SARS-CoV-2 causes mitochondrial dysfunction and mitophagy impairment. Front Microbiol 2021; 12: 780768. |
| 48. |
Yang X, Jiang T, Wang Y, Guo L. The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep 2019; 9: 18424.
DOI PMID |
| 49. |
Martinez-Vicente M. Neuronal mitophagy in neurodegenerative diseases. Front Mol Neurosci 2017; 10: 64.
DOI PMID |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.
