Journal of Traditional Chinese Medicine ›› 2023, Vol. 43 ›› Issue (6): 1209-1218.DOI: 10.19852/j.cnki.jtcm.20230908.002
• Research Articles • Previous Articles Next Articles
REN Hui1, ZHAO Lintao1, GAO Kai1, YANG Yuanyuan2, CUI Xiaomin1, HU Jing1, CHEN Zhiyong1(), LI Ye1()
Received:
2022-06-22
Accepted:
2022-09-16
Online:
2023-10-25
Published:
2023-09-08
Contact:
CHEN Zhiyong, Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China. chenzhiyong0612@sina.com; LI Ye, Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China. 18829014325@163.com. Telephone: +86-29-85395659
Supported by:
REN Hui, ZHAO Lintao, GAO Kai, YANG Yuanyuan, CUI Xiaomin, HU Jing, CHEN Zhiyong, LI Ye. Deciphering the chemical profile and pharmacological mechanism of Jinlingzi powder (金铃子散) against bile reflux gastritis using ultra-high performance liquid chromatography coupled with Q exactive focus mass spectrometry, network pharmacology, and molecular docking[J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1209-1218.
Figure 1 Histopathological examination of gastric antrum was observed by hematoxylin and eosin staining (×100) A: normal group; B: model group; C: domperidone group (Domperidone was administered to rats by gavage for 35 consecutive days at a dose of 3.15 mg/kg body weight); D: high dose JLZP extract group (JLZP extract was administered to rats by gavage for 35 consecutive days at a dose of 2.48 g/kg body weight); E: middle dose JLZP extract group (JLZP extract was administered to rats by gavage for 35 consecutive days at a dose of 1.24 g/kg body weight); F: low dose JLZP extract group (JLZP extract was administered to rats by gavage for 35 consecutive days at a dose of 0.62 g/kg body weight); JLZP: Jinlingzi powder.
Group | n | Residual gastric rate (%) | Serum levels (pg/mL) | ||
---|---|---|---|---|---|
TNF-α | IL-6 | Gastrin | |||
N | 10 | 20.64±0.14 | 17.25±3.80 | 50.71±24.99 | 14.79±4.96 |
G | 10 | 50.53±0.24a | 32.05±15.37a | 85.19±30.87d | 8.92±1.38a |
D | 10 | 26.14±0.15b | 19.12±7.93b | 55.52±11.10b | 13.13±4.19b |
HJ | 10 | 26.07±0.14b | 17.63±8.94c | 46.71±25.07c | 13.07±1.91b |
MJ | 10 | 35.50±0.20 | 20.12±10.10b | 63.57±23.25 | 12.82±2.26b |
LJ | 10 | 40.24±0.18 | 22.56±7.36 | 42.95±28.51c | 9.74±2.85 |
Table 1 Comparison of residual gastric rate, and TNF-α, IL-6, and gastrin levels ($\bar{x}$ ± s)
Group | n | Residual gastric rate (%) | Serum levels (pg/mL) | ||
---|---|---|---|---|---|
TNF-α | IL-6 | Gastrin | |||
N | 10 | 20.64±0.14 | 17.25±3.80 | 50.71±24.99 | 14.79±4.96 |
G | 10 | 50.53±0.24a | 32.05±15.37a | 85.19±30.87d | 8.92±1.38a |
D | 10 | 26.14±0.15b | 19.12±7.93b | 55.52±11.10b | 13.13±4.19b |
HJ | 10 | 26.07±0.14b | 17.63±8.94c | 46.71±25.07c | 13.07±1.91b |
MJ | 10 | 35.50±0.20 | 20.12±10.10b | 63.57±23.25 | 12.82±2.26b |
LJ | 10 | 40.24±0.18 | 22.56±7.36 | 42.95±28.51c | 9.74±2.85 |
Figure 4 Docking simulation of key compounds to AKT1 (PDB ID: 4EKL) or PIK3CA (PDB ID: 6OAC) targets A: dihydrochelerythrine to AKT1 (Binding free energy = -8.98 kcal/mol); B: isoquercitrin to AKT1 (binding free energy = -9.76 kcal/mol); C: coptisine to AKT1 (binding free energy =-8.90 kcal/mol); D: coptisine to PIK3CA (binding free energy = -10.52 kcal/mol); E: dihydrochelerythrine to PIK3CA (binding free energy = -9.45 kcal/mol); F: jatrorrhizine to PIK3CA (binding free energy = -9.05 kcal/mol). AKT1: RAC-alpha serine/threonine-protein kinase; PIK3CA: phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform.
1. |
McCabe IV ME, Dilly CK. New causes for the old problem of bile reflux gastritis. Clin Gastroen Hepatol 2018; 16: 1389-92.
DOI URL |
2. | Chen HX, Sun JJ, Ma C. Clinical study of addition and subtraction therapy of Huagan Jian and Jinlinzi San to patients with bile reflux gastritis with syndrome of stagnation of liver and stomach heat. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2021; 27: 82-7. |
3. | Zhao YN, Xu CP. Etiology, pathogenesis, diagnosis and treatment of bile reflux gastritis. Shi Jie Hua Ren Xiao Hua Za Zhi 2018; 26: 1886-92. |
4. |
Du X, Zhao L, Yang Y, et al. Investigation of the mechanism of action of Porana sinensis Hemsl. against gout arthritis using network pharmacology and experimental validation. J Ethnopharmacol 2020; 252: 112606.
DOI URL |
5. | Zhao X, Li J, Meng Y, Cao M, Wang J. Treatment effects of Jinlingzi powder and its extractive components on gastric ulcer induced by acetic acid in rats. Evid Based Complement Alternat Med 2019; 2019: 7365841. |
6. | Wang C, Yang J, Xiao B, Huang R. Comparison of analgesic and anti-inflammatory effect of Jinlingzisan compound and its single herbal. Ke Xue Ji Shu Yu Gong Cheng 2018; 18: 209-12. |
7. |
Li W, Mao X, Wu H, et al. Deciphering the chemical profile and pharmacological mechanisms of Baihu-Guizhi decoction using ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry coupled with network pharmacology-based investigation. Phytomedicine 2020; 67: 153156.
DOI URL |
8. |
Fu LL, Ding H, Han LF, et al. Simultaneously targeted and untargeted multicomponent characterization of Erzhi pill by offline two-dimensional liquid chromatography/quadrupole-orbitrap mass spectrometry. J Chromatogr A 2019; 1584: 87-96.
DOI URL |
9. |
Xu L, Shang Z, Bo T, et al. Rapid quantitation and identification of the chemical constituents in Danhong injection by liquid chromatography coupled with orbitrap mass spectrometry. J Chromatogr A 2019; 1606: 460378.
DOI URL |
10. | Li S, Li X, Deng Q, et al. Simultaneous determination of eight constituents in Jiaoxiang Wenzhong Zhitong ointment by HPLC. Zhong Cheng Yao 2020; 42: 2853-6. |
11. | Liu Y, Zou Y, Liang J. Therapeutic effect and mechanism of Chaizhixiaji decoction on bile reflux gastritis rats. Yao Wu Ping Jia Yan Jiu 2017; 40: 1073-7. |
12. | Ru J, Li P, Wang J, et al. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014; 6: 13. |
13. | Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinform 2016; 54: 1.30.1-33. |
14. |
David G, Aurélien G, Matthias W, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42: W32-8.
DOI URL |
15. |
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447-52.
DOI URL |
16. |
Sun M, Liu J, Lin C, Miao L, Lin L. Alkaloid profiling of the Traditional Chinese Medicine Rhizoma Corydalis using high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. Acta Pharm Sin B 2014; 4: 208-16.
DOI URL |
17. |
Cui ZR, Li Y, Zhao ML, et al. MS diagnostic model and rapid distinguishing of bioactive limonoids in fruits of Melia toosendan using solid-phase extraction coupled with LC-MS/MS. Phytochem anal 2021; 32: 308-17.
DOI URL |
18. |
Dong SH, Zhang CR, He XF, Liu HB, Wu Y, Yue JM. Mesendanins A-J, limonoids from the leaves and twigs of Melia toosendan. J Nat Prod 2010; 73: 1344-9.
DOI URL |
19. | Li Z, Xu J, Ju J, Zhu Y, Wang L. Chemical constituents from water extract of Toosendan Fructus by UPLC-ESI-Q-TOF-MS. Zhong Cao Yao 2015; 46: 496-501. |
20. |
Wu SB, Su JJ, Sun LH, et al. Triterpenoids and steroids from the fruits of Melia toosendan and their cytotoxic effects on two human cancer cell lines. J Nat Prod 2010; 73: 1898-906.
DOI URL |
21. |
Zhang Y, Tang CP, Ke CQ, Li XQ, Xie H, Ye Y. Limonoids from the fruits of Melia toosendan. Phytochemistry 2012; 73: 106-13.
DOI PMID |
22. |
Zhang Y, Tang CP, Ke CQ, Yao S, Ye Y. Limonoids and triterpenoids from the stem bark of Melia toosendan. J Nat Prod 2010; 73: 664-8.
DOI PMID |
23. |
Huang M, Zhang Y, Xu S, et al. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J Pharm Biomed Anal 2015; 108: 11-20.
DOI PMID |
24. |
Liu X, Fan X, Wang X, Liu R, Meng C, Wang C. Structural characterization and Screening of Chemical Markers of Flavonoids in Lysimachiae Herba and Desmodii Styracifolii Herba by ultra high-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry based metabolomics approach. J Pharm Biomed 2019; 171: 52-64.
DOI URL |
25. |
Tian Y, Deng Y, Zhang W, Mu W. Sucrose isomers as alternative sweeteners: properties, production, and applications. Appl Microbiol Biotechnol 2019; 103: 8677-87.
DOI PMID |
26. |
Schubert ML, Rehfeld JF. Gastric peptides-gastrin and somatostatin. Compr Physiol 2019; 10: 197-228.
DOI PMID |
27. |
Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012; 119: 651-65.
DOI PMID |
28. | Stefan RJ. Interleukin-6 family cytokines. C S H Perspect Biol 2018; 10: a028415. |
29. | Han YQ, Xu J, Gong SX, Zhang TJ, Liu CX. Chemical constituents and mechanism of Corydalis Rhizoma based on HPLC-QTOF/MS and G protein-coupled receptor analysis. Yao Xue Xue Bao 2016; 51: 1302-8. |
30. |
Xie Y, Shi X, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol Med Rep 2019; 19: 783-91.
DOI PMID |
31. |
Sokolova O, Vieth M, Gnad T, Bozko PM, Naumann M. Helicobacter pylori promotes eukaryotic protein translation by activating phosphatidylinositol 3kinase/mTOR. Int J Biochem Cell Biol 2014; 55: 157-63.
DOI PMID |
32. | Tong Y, Wang R, Liu X, et al. Zuojin pill ameliorates chronic atrophic gastritis induced by MNNG through TGF-β1/PI3K/Akt axis. J Ethnopharmacol 2021; 271: 113893. |
33. |
Wang Y, Liu Y, Du X, Ma H, Yao J. The anti-cancer mechanisms of berberine: a review. Cancer Manag Res 2020; 12: 695-702.
DOI PMID |
34. |
Tong Y, Liu L, Wang R, et al. Berberine attenuates chronic atrophic gastritis induced by MNNG and its potential mechanism. Front Pharmacol 2021; 12: 644638.
DOI URL |
35. |
Liu X, Hu Z, Shi Q, et al. Anti-inflammatory and anti-nociceptive activities of compounds from Tinospora sagittata (Oliv.) Gagnep. Arch Pharm Res 2010; 33: 981-7.
DOI PMID |
36. |
Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev 2017; 49: 139-57.
DOI PMID |
37. |
Tarabasz D, Kukula-Koch W. Palmatine: a review of pharmacological properties and pharmacokinetics. Phytother Res 2020; 34: 33-50.
DOI PMID |
38. |
Wu J, Zhang H, Hu B, et al. Coptisine from Coptis chinensis inhibits production of inflammatory mediators in lipopoly-saccharide-stimulated RAW 264.7 murine macrophage cells. Eur J Pharmacol 2016; 780: 106-14.
DOI URL |
39. |
Hu J, Zhang WD, Liu RH, et al. Benzophenanthridine alkaloids from Zanthoxylum nitidum (Roxb.) DC, and their analgesic and anti-inflammatory activities. Chem Biodivers 2006; 3: 990-5.
DOI PMID |
40. |
Jin L, Zhou S, Zhu S, et al. Dehydrocorydaline induced antidepressant-like effect in a chronic unpredictable mild stress mouse model via inhibiting uptake-2 monoamine transporters. Eur J Pharmacol 2019; 864: 172725.
DOI URL |
41. |
Wen H, Zhang H, Wang W, Li Y. Tetrahydropalmatine protects against acute lung injury induced by limb ischemia/reperfusion through restoring PI3K/AKT/mTOR-mediated autophagy in rats. Pulm Pharmacol Ther 2020; 64: 101947.
DOI URL |
42. | Tian C, Liu X, Chang Y, Wang R, Yang M, Liu M. Rutin prevents inflammation induced by lipopolysaccharide in RAW 264.7 cells via conquering the TLR4-MyD88-TRAF6-NF-κB signalling pathway. J Pharm Pharmacol 2021; 73: 110-7. |
43. | Li L, Zhang XH, Liu GR, Liu C, Dong YM. Isoquercitrin suppresses the expression of histamine and pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-κB in human KU812 cells. Chin J Nat Med 2016; 14: 407-12. |
44. | Zhu M, Li J, Wang K, Hao X, Ge R, Li Q. Isoquercitrin inhibits hydrogen peroxide-induced apoptosis of EA.hy 926 cells via the PI3K/Akt/GSK3β signaling pathway. Molecules 2016; 21: 356. |
[1] | CHANG Fengjin, ZHOU Peng, LI Guoying, ZHANG Weizhi, ZHANG Yanyan, PENG Daiyin, CHEN Guangliang. Taohong Siwu decoction (桃红四物汤) ameliorates atherosclerosis in rats possibly through toll-like receptor 4/myeloid differentiation primary response protein 88/nuclear factor-κB signal pathway [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 103-112. |
[2] | ZHI Guoguo, SHAO Bingjie, ZHENG Tianyan, JI Shaoxiu, LI Jingwei, DANG Yanni, LIU Feng, WANG Dong. Efficacy of Ganshuang granules (肝爽颗粒) on non-alcoholic fatty liver and underlying mechanism: a network pharmacology and experimental verification [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 122-130. |
[3] | YANG Ye, CHEN Xiaoyang, YAO Junkai, HU Yueyao, WANG Wei. Efficacy of Danlou tablet (丹蒌片) on myocardial ischemia/ reperfusion injury assessed by network pharmacology and experimental verification [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 131-144. |
[4] | ZHANG Qi, CHEN Dexuan, ZHU Guixiang, ZHANG Shihu, FENG Xiao, MA Chaoqun, ZHANG Yi. Efficacy of Tounongsan decoction (透脓散方) on pyogenic liver abscess: network pharmacology and clinical trial validation [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 145-155. |
[5] | YANG Xirui, ZHAO Hui, SHAN Muhammad, DONG Feixue, ZHANG Dandan, WANG Jixue, YUAN Xingxing. Efficacy of bioactive compounds of Chaihu (Radix Bupleuri Chinensis) on glaucomatous optic atrophy through interleukin-6/hypoxia inducible factor-1α signal pathway [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1219-1226. |
[6] | HAN Huagang, LI Ziqiang, OUYANG Jingfeng, WANG Tianquan, DONG Lingyan, CAO Junling. Mechanism of Lingbao Huxin Dan (灵宝护心丹) in the treatment of bradyarrhythmia complicated with coronary heart disease: a network pharmacology analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 1001-1009. |
[7] | PANG Fengtao, LI Kesong, ZHANG Yi, TANG Xiaopo, ZHOU Xinyao. Efficacy of Lushi Runzao decoction (路氏润燥汤) on ameliorating Sjogren's syndrome: a network pharmacology and experimental verification-based study [J]. Journal of Traditional Chinese Medicine, 2023, 43(4): 751-759. |
[8] | JIA Lihua, KUANG Haodan, XU Yuan. Efficacy of Buzhong Yiqi decoction (补中益气汤) on benign prostatic hyperplasia and its possible mechanism [J]. Journal of Traditional Chinese Medicine, 2023, 43(3): 533-541. |
[9] | JIA Lihong, TIE Defu, FAN Zhaohui, CHEN Dan, CHEN Qizhu, CHEN Jun, BO Huaben. Mechanism underlying Fanmugua (Fructus Caricae) leaf multicomponent synergistic therapy for anemia: data mining based on hematopoietic network [J]. Journal of Traditional Chinese Medicine, 2023, 43(3): 542-551. |
[10] | PENG Wan, NI Hengfan, GUO Dale, DENG Yun, DAI Manyun. Farnesoid X receptor regulators from natural products and their biological function [J]. Journal of Traditional Chinese Medicine, 2023, 43(3): 618-626. |
[11] | LI Yue, WEN Shuting, ZHAO Runyuan, FAN Dongmei, ZHAO Dike, LIU Fengbin, MI Hong. Efficacy of active ingredients in Qingdai (Indigo Naturalis) on ulcerative colitis: a network pharmacology-based evaluation [J]. Journal of Traditional Chinese Medicine, 2023, 43(1): 124-133. |
[12] | ZHOU Kaixuan, ZHANG Dong, BAO Huiwei, LI Lijing. Network pharmacology and molecular docking study on the effect of Kaempferol in treatment of metabolic associated fatty liver disease [J]. Journal of Traditional Chinese Medicine, 2022, 42(5): 788-794. |
[13] | JIANG Zong, YAO Xiaoling, MA Wukai, TANG Fang. Molecular mechanism analysis of Miao medicine Jinwujiangu decoction (金乌健骨方) in treating osteoarthritis based on a network pharmacology approach [J]. Journal of Traditional Chinese Medicine, 2022, 42(4): 576-585. |
[14] | PANG Xinxin, ZHU Qing, PENG Zining, ZHANG Yage, SHI Xiujie, HAN Jiarui. Exploring the mechanism of hirudin in the treatment of diabetic kidney disease using network pharmacology combined with molecular docking verification [J]. Journal of Traditional Chinese Medicine, 2022, 42(4): 586-594. |
[15] | QIAO Nan, WANG Qinnan, MA Chaoqun, CHEN Dexuan, CHEN Haidong, LU Yaoyao. Mechanism underlying efficacy of Shugan Sanjie decoction (疏肝散结汤) on plasma cell mastitis, based on network pharmacology and experimental verification [J]. Journal of Traditional Chinese Medicine, 2022, 42(3): 400-407. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.