Journal of Traditional Chinese Medicine ›› 2025, Vol. 45 ›› Issue (3): 571-585.DOI: 10.19852/j.cnki.jtcm.2025.03.012
Previous Articles Next Articles
FENG Chuwen1,2, LI Chaoran3, Yang Yan4, QU Yuanyuan1,2, SUN Zhongren4, SUN Weibo6, LIU Tingting5, LI Shulin1,2(
), Yang Tiansong1,2(
)
Received:2024-11-22
Accepted:2025-02-25
Online:2025-06-15
Published:2025-05-21
Contact:
Prof. LI Shulin, Rehabilitation Department Ⅱ, the First Affiliated Hospital of Heilongjiang University of Chinese Medicine; Harbin 150040, China; Heilongjiang Province Key Laboratory of Traditional Chinese Medicine Information, Harbin 150040, China. lisl0022@163.com;Prof. YANG Tiansong, Rehabilitation Department II, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine; Harbin 150040, China; Heilongjiang Province Key Laboratory of Traditional Chinese Medicine Information, Harbin 150040, China. yangtiansong2006@163.com,Telephone: +86-18846178111
Supported by:FENG Chuwen, LI Chaoran, Yang Yan, QU Yuanyuan, SUN Zhongren, SUN Weibo, LIU Tingting, LI Shulin, Yang Tiansong. Identifying potential biomarkers in the hippocampus of chronic fatigue syndrome rats treated with moxibustion at Zusanli (ST36): a proteomics study[J]. Journal of Traditional Chinese Medicine, 2025, 45(3): 571-585.
Figure 1 Effects of Moxibustion Zusanli (ST36) on general condition score and behavioristics of rats A: result of general condition score variation among the three groups; B: result of exhaustive treadmill time variation among the three groups; C: result of OFT; C1: crossing score among the three groups; C2: numbers of crossing the central regionin among the three groups; D: result of MWW test; D1: crossing score among the three groups; D2: Numbers of crossing the central regionin among the three groups. CON group: Normal breeding; MOD group: Modeling + Binding during treatment; MOX group: Modeling + Moxibustion at bilateral Zusanli (ST36) 10 min/d for 4 weeks. M represents the molding stage and A represents the moxibustion treatment stage. OFT: Open Field Test; MWW: Morris Water Maze. Statistical analyses were measured using one-way analysis of variance followed by post hoc Bonferroni correction for multiple comparisons. Data were presented as mean ± standard deviation (n = 12), aP < 0.05, compared with the CON group; bP < 0.05, compared with the MOD group.
Figure 2 Effects of Moxibustion Zusanli (ST36) on the morphological structure of CA1 region in hippocampus of rats A: results of HE staining (× 200,X = 50 μm, the arrows represent the phenomenon of nerve fibers being twisted into knots); B: results of TEM (×20050, X = 500 nm, the red box represents typical synaptic structural damage); A1, B1: CON group; A2, B2: MOD group; A3, B3: MOX group. CON group: Normal breeding; MOD group: Modeling + Binding during treatment; MOX group: Modeling + Moxibustion at bilateral Zusanli (ST36) 10 min/d for 4 weeks. HE: hematoxylin and eosin; TEM: transmission electron microscopy.
| Accession | Protein name | Gene symbol | CON vs MOD | MOX vs MOD | |||
|---|---|---|---|---|---|---|---|
| Fold change | P value | Fold change | P value | ||||
| Q157S1 | CREB-regulated transcription coactivator 1 | Crtc1 | 1.528 | 0.029 | 1.427 | 0.022 | |
| B0K008 | Eukaryotic Translation Initiation Factor 1 | Eif1 | 1.498 | 0.014 | 1.741 | 0.031 | |
| Q6AYS2 | Sideroflexin | Sfxn1 | 0.822 | 0.044 | 0.778 | 0.020 | |
| Q642B0 | Glypican 4 | Gpc4 | 0.802 | 0.045 | 0.784 | 0.040 | |
| D4A3M8 | Non-Catalytic Region Of Tyrosine Kinase Adaptor Protein 2 (Predicted) | Nck2 | 0.751 | 0.037 | 0.743 | 0.049 | |
| P61354 | 60s Ribosomal Protein L27 | Rpl27 | 0.738 | 0.035 | 0.739 | 0.030 | |
| A0A0G2K7F7 | Tropomyosin Alpha-1 Chain | Tpm1 | 0.738 | 0.028 | 0.712 | <0.00001 | |
| B5DF51 | Membrane Magnesium Transporter 1 | Mmgt1 | 0.723 | 0.022 | 0.729 | 0.036 | |
| Q6AY71 | Protein C8orf37 Homolog | N/A | 0.719 | 0.034 | 0.627 | 0.005 | |
| Q4V7F2 | Cysteine-Rich With EGF-Like Domain Protein 1 | Creld1 | 0.706 | 0.030 | 0.731 | 0.030 | |
| Q76IJ9 | Elav-Like Protein | Elavl3 | 0.706 | 0.030 | 0.744 | 0.034 | |
| A0A0G2JY31 | Alpha-1-Antiproteinase | Serpina1 | 0.680 | 0.014 | 0.764 | 0.020 | |
| Q5RK10 | 60s Ribosomal Protein L13a | Rpl13a | 0.657 | 0.021 | 0.732 | 0.045 | |
| G3V6M3 | Synaptotagmin Ⅱ | Syt2 | 0.619 | 0.006 | 0.607 | 0.005 | |
| Q5I0P2 | Glycine Cleavage System H Protein, Mitochondrial | Gcsh | 0.605 | 0.012 | 0.66 | 0.049 | |
| D3Z9Z0 | Ankyrin 1, Erythroid | Ank1 | 0.587 | 0.039 | 0.668 | 0.014 | |
Table 1 Potential Biomarkers for Moxibustion Treatment of CFS Rats
| Accession | Protein name | Gene symbol | CON vs MOD | MOX vs MOD | |||
|---|---|---|---|---|---|---|---|
| Fold change | P value | Fold change | P value | ||||
| Q157S1 | CREB-regulated transcription coactivator 1 | Crtc1 | 1.528 | 0.029 | 1.427 | 0.022 | |
| B0K008 | Eukaryotic Translation Initiation Factor 1 | Eif1 | 1.498 | 0.014 | 1.741 | 0.031 | |
| Q6AYS2 | Sideroflexin | Sfxn1 | 0.822 | 0.044 | 0.778 | 0.020 | |
| Q642B0 | Glypican 4 | Gpc4 | 0.802 | 0.045 | 0.784 | 0.040 | |
| D4A3M8 | Non-Catalytic Region Of Tyrosine Kinase Adaptor Protein 2 (Predicted) | Nck2 | 0.751 | 0.037 | 0.743 | 0.049 | |
| P61354 | 60s Ribosomal Protein L27 | Rpl27 | 0.738 | 0.035 | 0.739 | 0.030 | |
| A0A0G2K7F7 | Tropomyosin Alpha-1 Chain | Tpm1 | 0.738 | 0.028 | 0.712 | <0.00001 | |
| B5DF51 | Membrane Magnesium Transporter 1 | Mmgt1 | 0.723 | 0.022 | 0.729 | 0.036 | |
| Q6AY71 | Protein C8orf37 Homolog | N/A | 0.719 | 0.034 | 0.627 | 0.005 | |
| Q4V7F2 | Cysteine-Rich With EGF-Like Domain Protein 1 | Creld1 | 0.706 | 0.030 | 0.731 | 0.030 | |
| Q76IJ9 | Elav-Like Protein | Elavl3 | 0.706 | 0.030 | 0.744 | 0.034 | |
| A0A0G2JY31 | Alpha-1-Antiproteinase | Serpina1 | 0.680 | 0.014 | 0.764 | 0.020 | |
| Q5RK10 | 60s Ribosomal Protein L13a | Rpl13a | 0.657 | 0.021 | 0.732 | 0.045 | |
| G3V6M3 | Synaptotagmin Ⅱ | Syt2 | 0.619 | 0.006 | 0.607 | 0.005 | |
| Q5I0P2 | Glycine Cleavage System H Protein, Mitochondrial | Gcsh | 0.605 | 0.012 | 0.66 | 0.049 | |
| D3Z9Z0 | Ankyrin 1, Erythroid | Ank1 | 0.587 | 0.039 | 0.668 | 0.014 | |
| 1. | Chronic COTD, Syndrome F, Populations BOTH, Medicine IO. Beyond myalgic encephalomyelitis/chronic fatigue syndrome:redefining an illness. Washington (DC): National Academies Press (US), 2015: 209-30. |
| 2. | Lim EJ, Son CG. Review of case definitions for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med 2020; 18: 289. |
| 3. | Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. London: National Institute for Health and Care Excellence (NICE), 2021: 15. |
| 4. |
Grach SL, Seltzer J, Chon TY, Ganesh R. Diagnosis and management of myalgic encephalomyelitis/chronic fatigue syndrome. Mayo Clin Proc 2023; 98: 1544-51.
DOI PMID |
| 5. | Liu TT, Sun WB, Guo SH, et al. Research progress on pathogenesis of chronic fatigue syndrome and treatment of Traditional Chinese and Western Medicine. Auton Neurosci 2024; 255: 103198. |
| 6. | Arron HE, Marsh BD, Kell DB, Khan MA, Jaeger BR, Pretorius E. Myalgic encephalomyelitis/chronic fatigue syndrome: the biology of a neglected disease. Front Immunol 2024; 15: 1386607. |
| 7. |
White P, Abbey S, Angus B, et al. Anomalies in the review process and interpretation of the evidence in the NICE guideline for chronic fatigue syndrome and myalgic encephalomyelitis. J Neurol Neurosurg Psychiatry 2023; 94: 1056-63.
DOI PMID |
| 8. | Wong TL, Weitzer DJ. Long covid and myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs)-a systemic review and comparison of clinical presentation and symptomatology. Medicina (Kaunas) 2021; 57: 418. |
| 9. |
Sukocheva OA, Maksoud R, Beeraka NM, et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syndrome. J Adv Res 2022; 40: 179-96.
DOI PMID |
| 10. | Komaroff AL, Bateman L. Will covid-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? Front Med (Lausanne) 2021; 7: 606824. |
| 11. |
Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol Med 2021; 27: 895-906.
DOI PMID |
| 12. | Friedman KJ, Murovska M, Pheby D, Zalewski P. Our evolving understanding of ME/CFS. Medicina (Kaunas) 2021; 57: 200. |
| 13. |
Mantovani E, Mariotto S, Gabbiani D, et al. Chronic fatigue syndrome: an emerging sequela in COVID-19 survivors? J Neurovirol 2021; 27: 631-7.
DOI PMID |
| 14. | Bonilla H, Quach TC, Tiwari A, et al. Myalgic encephalomyelitis/chronic fatigue syndrome is common in post-acute sequelae of SARS-CoV-2 infection (PASC): results from a post-COVID-19 multidisciplinary clinic. Front Neurol 2023; 14: 1090747. |
| 15. | Fang Y, Yue BW, Ma HB, Yuan YP. Acupuncture and moxibustion for chronic fatigue syndrome: a systematic review and network Meta-analysis. Medicine (Baltimore) 2022; 101: e29310. |
| 16. | Zhang ML, Fu HJ, Tang Y, Luo ZG, Li JY, Li R. Effect of acupoint catgut embedding in chronic fatigue syndrome patients: a protocol for systematic review and Meta-analysis. Medicine (Baltimore) 2021; 100: e23946. |
| 17. | You JY, Ye J, Li HY, Ye WG, Hong ES. Moxibustion for chronic fatigue syndrome: a systematic review and Meta-analysis. Evid Based Complement Alternat Med 2021; 2021: 6418217. |
| 18. | Xue KY, Wang YP, Wang XZ, et al. The efficacy and safety of moxibustion for chronic fatigue syndrome: a protocol for systematic review and Meta-analysis. Medicine (Baltimore) 2021; 100: e25742. |
| 19. | Yin ZH, Wang LJ, Cheng Y, et al. Acupuncture for chronic fatigue syndrome: an overview of systematic reviews. Chin J Integr Med 2021; 27: 940-6. |
| 20. |
Li CR, Yang Y, Feng CW, et al. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J Tradit Chin Med 2023; 43: 1176-89.
DOI |
| 21. | Li CR, Wang X, Feng CW, et al. Improvement effects of moxibustion on intestinal mucosal barrier and fatigue of rats with chronic fatigue syndrome. Zhong Guo Zhong Yi Yao Ke Ji 2022; 29: 523-27. |
| 22. | Feng CW, Qu YY, Sun ZR, et al. Research progresses of MRI on brain structures and functions of chronic fatigue syndrome. Zhong Guo Yi Xue Ying Xiang Ji Shu 2022; 38: 775-8. |
| 23. | Maksoud R, du Preez S, Eaton-Fitch N, et al. A systematic review of neurological impairments in myalgic encephalomyelitis/ chronic fatigue syndrome using neuroimaging techniques. PLoS One 2020; 15: e232475. |
| 24. | Zeng XX, Feng CW, Zhang MH, Cheng WP, Sun Z, Yang TS. Exploring the central mechanism of mind-regulation electroacupuncture in treatment of chronic fatigue syndrome with anxiety and depression comorbidity based on functional magnetic resonance imaging. Zhong Guo Zhen Jiu 2024; 44: 3-11. |
| 25. | Wang TG, Sun ZR, Wang J, et al. The ReHo of rs-fMRI features for chronic fatigue syndrome in medical students. Lin Chuang Fang She Xue Za Zhi 2024; 43: 129-34. |
| 26. | Germain A, Levine SM, Hanson MR. In-depth analysis of the plasma proteome in me/cfs exposes disrupted ephrin-eph and immune system signaling. Proteomes 2021; 9: 6. |
| 27. |
Eguchi A, Fukuda S, Kuratsune H, et al. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun 2020; 84: 106-14.
DOI PMID |
| 28. | Nunes M, Vlok M, Proal A, Kell DB, Pretorius E. Data-independent LC-MS/MS analysis of ME/CFS plasma reveals a dysregulated coagulation system, endothelial dysfunction, downregulation of complement machinery. Cardiovasc Diabetol 2024; 23: 254. |
| 29. | Yang Y, Sun ZR, Li CR, et al. Effect of electroacupuncture on fecal metabolism in rats with chronic fatigue syndrome. Liaoning Zhong Yi Za Zhi 2024: 51: 187-92. |
| 30. | Yang Y, Sun ZR, Li CR, et al. Effect of electroacupuncture on expression of protein phosphorylation in hippocampus tissues of rats with chronic fatigue syndrome. Zhen Ci Yan Jiu 2024; 49: 594-603. |
| 31. | Chi AP, Kang CZ, Zhang Y, et al. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus Jujube on chronic fatigue syndrome rats. Carbohydr Polym 2015; 122: 189-96. |
| 32. |
Chi AP, Zhang Y, Kang YJ, Shen ZM. Metabolic mechanism of a polysaccharide from Schisandra chinensis to relieve chronic fatigue syndrome. Int J Biol Macromol 2016; 93: 322-32.
DOI PMID |
| 33. | Zhang LF. Experimental acupuncture science. Beijing: Chemical Industry Press, 2010: 219-20. |
| 34. | Gao HL, Wu YL, Zhu HM, et al. Establishment of animal model with chronic fatigue syndrome and its influence on functions of blood vessel endothelium. Zhong Guo Zhong Yi Ji Chu Yi Xue Za Zhi 2009; 15: 904-6. |
| 35. | Chiu JH. How does moxibustion possibly work? Evid Based Complement Alternat Med 2013; 2013: 198584. |
| 36. | Feng CW, Qu YY, Fan ZL, et al. Acupoints regularity of moxibustion treating CFS based on collection visualization analysis system. Zhen Jiu Lin Chuang Za Zhi 2021; 37: 43-51. |
| 37. | Xu Q, Lu CX, Wu HX, et al. Effect of mild moxibustion at 45℃ with different durations at "Zusanli" [Zusanli (ST36)] on the inflammatory factors in the abdominal aorta of hyperlipidemia rats. Zhen Ci Yan Jiu 2023; 48: 923-32. |
| 38. | Li LL, Su L, Hu MY, Zhang XY, Chen JX, Lu Y. Analysis of the effects of Shengyang Sanhuo decoction and its disassem-bled prescriptions on behavior and intestinal flora of mice with chronic fatigue syndrome. Beijing Zhong Yi Yao Da Xue Xue Bao 2021; 44: 908-16. |
| 39. |
Zhang GL, Lu BF, Wang EH, et al. Panax ginseng improves physical recovery and energy utilization on chronic fatigue in rats through the PI3K/AKT/mTOR signalling pathway. Pharm Biol 2023; 61: 316-23.
DOI PMID |
| 40. | Saury JM. The role of the hippocampus in the pathogenesis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 2016; 86: 30-8. |
| 41. |
Cifani P, Kentsis A. High sensitivity quantitative proteomics using automated multidimensional nano-flow chromatography and accumulated ion monitoring on quadrupole-orbitrap-linear ion trap mass spectrometer. Mol Cell Proteomics 2017; 16: 2006-16.
DOI PMID |
| 42. |
Ch'Ng TH, DeSalvo M, Lin P, Vashisht A, Wohlschlegel JA, Martin KC. Cell biological mechanisms of activity-dependent synapse to nucleus translocation of CRTC1 in neurons. Front Mol Neurosci 2015; 8: 48.
DOI PMID |
| 43. |
Ch'Ng TH, Uzgil B, Lin P, Avliyakulov NK, O'Dell TJ, Martin KC. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 2012; 150: 207-21.
DOI PMID |
| 44. | Pan Y, He XZ, Li CC, et al. Neuronal activity recruits the CRTC1/CREB axis to drive transcription-dependent autophagy for maintaining late-phase LTD. Cell Rep 2021; 36: 109398. |
| 45. |
Si YF, Xue X, Liu S, et al. CRTC1 signaling involvement in depression-like behavior of prenatally stressed offspring rat. Behav Brain Res 2021; 399: 113000.
DOI PMID |
| 46. | Yan PY, Xue ZC, Li DZ, et al. Dysregulated CRTC1-BDNF signaling pathway in the hippocampus contributes to Abeta oligomer-induced long-term synaptic plasticity and memory impairment. Exp Neurol 2021; 345: 113812. |
| 47. | Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11: 2512-40. |
| 48. |
Graber TE, Hebert-Seropian S, Khoutorsky A, et al. Reactivation of stalled polyribosomes in synaptic plasticity. Proc Natl Acad Sci USA 2013; 110: 16205-10.
DOI PMID |
| 49. | Tye BW, Commins N, Ryazanova Lyu, et al. Proteotoxicity from aberrant ribosome biogenesis compromises cell fitness. Elife 2019; 8: e43002. |
| 50. |
Bouhours B, Gjoni E, Kochubey O, Schneggenburger R. Synaptotagmin2 (Syt2) drives fast release redundantly with Syt1 at the output synapses of parvalbumin-expressing inhibitory neurons. J Neurosci 2017; 37: 4604-17.
DOI PMID |
| 51. |
Lee J, Guan Z, Akbergenova Y, Littleton JT. Genetic analysis of synaptotagmin C2 domain specificity in regulating spontaneous and evoked neurotransmitter release. J Neurosci 2013; 33: 187-200.
DOI PMID |
| 52. | Donkervoort S, Mohassel P, Laugwitz L, et al. Biallelic loss of function variants in SYT2 cause a treatable congenital onset presynaptic myasthenic syndrome. Am J Med Genet a 2020; 182: 2272-83. |
| 53. |
Kochubey O, Lou X, Schneggenburger R. Regulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse. Trends Neurosci 2011; 34: 237-46.
DOI PMID |
| 54. |
Bereczki E, Branca RM, Francis PT, et al. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 2018; 141: 582-95.
DOI PMID |
| 55. | Yi XX, Li JY, Tang ZZ, et al. Marinoid J, a phenylglycoside from Avicennia marina fruit, ameliorates cognitive impairment in rat vascular dementia: a quantitative iTRAQ proteomic study. Pharm Biol 2020; 58: 1211-20. |
| 56. |
Chaki SP, Rivera GM. Integration of signaling and cytoskeletal remodeling by Nck in directional cell migration. Bioarchitecture 2013; 3: 57-63.
DOI PMID |
| 57. |
Lettau M, Kliche S, Kabelitz D, Janssen O. The adapter proteins ADAP and Nck cooperate in T cell adhesion. Mol Immunol 2014; 60: 72-9.
DOI PMID |
| 58. |
Dubrac A, Genet G, Ola R, et al. Targeting NCK-mediated endothelial cell front-rear polarity inhibits neovascularization. Circulation 2016; 133: 409-21.
DOI PMID |
| 59. |
Srivastava N, Robichaux MA, Chenaux G, Henkemeyer M, Cowan CW. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak. Mol Cell Neurosci 2013; 52: 106-16.
DOI PMID |
| 60. |
Thevenot E, Moreau AW, Rousseau V, et al. p21-Activated kinase 3 (PAK3) protein regulates synaptic transmission through its interaction with the Nck2/Grb4 protein adaptor. J Biol Chem 2011; 286: 40044-59.
DOI PMID |
| 61. |
Round JE, Sun H. The adaptor protein Nck2 mediates Slit1-induced changes in cortical neuron morphology. Mol Cell Neurosci 2011; 47: 265-73.
DOI PMID |
| 62. | Chang CJ, Chang MY, Lee YC, et al. Nck2 is essential for limb trajectory selection by spinal motor axons. Dev Dyn 2018; 247: 1043-56. |
| 63. |
Wegmeyer H, Egea J, Rabe N, et al. EphA4-dependent axon guidance is mediated by the RacGAP alpha2-chimaerin. Neuron 2007; 55: 756-67.
DOI PMID |
| 64. | Lu YL, Liu YJ, McCoy MJ, Yoo AS. MiR-124 synergism with ELAVL3 enhances target gene expression to promote neuronal maturity. Proc Natl Acad Sci USA 2021; 118: e2015454118. |
| 65. |
DeStefano AL, Latourelle J, Lew MF, et al. Replication of association between ELAVL4 and Parkinson disease: the GenePD study. Hum Genet 2008; 124: 95-9.
DOI PMID |
| 66. |
Krach F, Batra R, Wheeler EC, et al. Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS. Acta Neuropathol 2018; 136: 405-23.
DOI PMID |
| 67. | Amadio M, Pascale A, Wang J, et al. nELAV proteins alteration in Alzheimer's disease brain: a novel putative target for amyloid-beta reverberating on Abeta PP processing. J Alzheimers Dis 2009; 16: 409-19. |
| 68. |
Ogawa Y, Kakumoto K, Yoshida T, et al. Elavl3 is essential for the maintenance of Purkinje neuron axons. Sci Rep 2018; 8: 2722.
DOI PMID |
| 69. | Leung KY, De Castro S, Galea GL, Copp AJ, Greene N. Glycine cleavage system H protein is essential for embryonic viability, implying additional function beyond the glycine cleavage system. Front Genet 2021; 12: 625120. |
| 70. |
Adamus A, Muller P, Nissen B, et al. GCSH antisense regulation determines breast cancer cells' viability. Sci Rep 2018; 8: 15399.
DOI PMID |
| 71. | Tifoun N, Bekhouche M, De Las HJ, et al. A high-throughput search for SFXN1 physical partners led to the identification of ATAD3, HSD10 and TIM50. Biology (Basel) 2022; 11: 1298. |
| 72. | Li YJ, Yang WK, Liu CJ, et al. SFXN1-mediated immune cell infiltration and tumorigenesis in lung adenocarcinoma: a potential therapeutic target. Int Immunopharmacol 2024; 132: 111918. |
| 73. | Zhang YH, Liu XS, Gao Y, et al. SFXN1 as a potential diagnostic and prognostic biomarker of LUAD is associated with (18)F-FDG metabolic parameters. Lung Cancer 2024; 188: 107449. |
| 74. | Acoba MG, Alpergin E, Renuse S, et al. The mitochondrial carrier SFXN1 is critical for complex Ⅲ integrity and cellular metabolism. Cell Rep 2021; 34: 108869. |
| 75. |
Ross SM. Mitochondria dysfunction and chronic fatigue syndrome. Holist Nurs Pract 2024; 38: 245-7.
DOI PMID |
| 76. | Dasi F. Alpha-1 antitrypsin deficiency. Med Clin (Barc) 2024; 162: 336-42. |
| 77. |
Torres-Duran M, Lopez-Campos JL, Barrecheguren M, et al. Alpha-1 antitrypsin deficiency: outstanding questions and future directions. Orphanet J Rare Dis 2018; 13: 114.
DOI PMID |
| 78. | Peng SY, Xu JH, Pelkey KA, et al. Suppression of agrin-22 production and synaptic dysfunction in Cln1 (-/-) mice. Ann Clin Transl Neurol 2015; 2: 1085-104. |
| 79. | Sakamoto K, Ozaki T, Suzuki Y, Kadomatsu K. Type Ⅱa RPTPs and Glycans: roles in axon regeneration and synaptogenesis. Int J Mol Sci 2021; 22:5524. |
| 80. | Ma KG, Hu HB, Zhou JS, et al. Neuronal Glypican4 promotes mossy fiber sprouting through the mTOR pathway after pilocarpine-induced status epilepticus in mice. Exp Neurol 2022; 347: 113918. |
| 81. | Huang K, Park S. Heparan Sulfated Glypican-4 is released from astrocytes by proteolytic shedding and gpi-anchor cleavage mechanisms. eNeuro 2021; 8. |
| 82. |
Dowling C, Allen NJ. Mice lacking Glypican 4 display juvenile hyperactivity and adult social interaction deficits. Brain Plast 2018; 4: 197-209.
DOI PMID |
| [1] | PENG Guangbin, LI Han, ZHU Lu, QI Qin, ZHENG Shiyu, ZHANG Linshan, LIN Yaying, MA Zhe, WU Luyi, HUANG Yan, WU Huangan. Regulation of mild moxibustion on non-neuronal cholinergic system in ulcerative colitis rats [J]. Journal of Traditional Chinese Medicine, 2025, 45(2): 368-375. |
| [2] | LI Yajing, WANG Baoying, SHAO Wenxue, LU Shuaifei, SU Pan, BAI Ming, XU Erping, LI Yucheng. Quantitative proteomic analysis of the brain reveals the potential antidepressant mechanism of Jiawei Danzhi Xiaoyao San (加味丹栀逍遥散) in a chronic unpredictable mild stress mouse model of depression [J]. Journal of Traditional Chinese Medicine, 2025, 45(1): 22-31. |
| [3] | LUO Kun, ZHONG Yumei, GUO Yanding, ZHANG Linlin, HU Danhui, MA Wenbin, YANG Xin, ZHOU Haiyan. Moxibustion inhibits the macrophage M1 polarization toll-like receptor 4/myeloid differentiation factor 88/nuclear factor kappa B signaling pathway by regulating T-cell immunoglobulin and mucin-containing protein-3 in rheumatoid arthritis [J]. Journal of Traditional Chinese Medicine, 2024, 44(6): 1227-1235. |
| [4] | LI Zhongzheng, ZHAO Yadan, Ma Weigang, Zhang Yonglong, XU Zhifang, XI Qiang, LI Yanqi, QIN Siru, ZHANG Zichen, WANG Songtao, ZHAO Xue, LIU Yangyang, GUO Yi, GUO Yongming. Adenosine triphosphate mediates the pain tolerance effect of manual acupuncture at Zusanli (ST36) in mice [J]. Journal of Traditional Chinese Medicine, 2024, 44(4): 660-669. |
| [5] | SHEN Jie, YIN Yaoli, LI Hongxiao, LU Ge, ZHU Yaoyao, QIN Yantong, JIN Xun, CHENG Jie, SHEN Meihong. Effect of moxibustion on expression profile of miRNAs in Tripterygium glycoside-induced decreased ovarian reserve [J]. Journal of Traditional Chinese Medicine, 2024, 44(4): 745-752. |
| [6] | GUO Yanding, LUO Kun, ZHANG Linlin, LU Wenting, SHANG Yanan, ZHONG Yumei, HU Danhui, YANG Xin, ZHOU Haiyan. Study on the anti-inflammatory mechanism of moxibustion in rheumatoid arthritis in rats based on phospholipaseA2 signaling inhibition by Annexin 1 [J]. Journal of Traditional Chinese Medicine, 2024, 44(4): 753-761. |
| [7] | WANG Zhibo, LI Ying, WANG Daoping, MA Bo, MIAO Lan, REN Junguo, LIU Jinghua, LIU Jianxun. Proteomics analysis of coronary atherosclerotic heart disease with different Traditional Chinese Medicine syndrome types before and after percutaneous coronary intervention [J]. Journal of Traditional Chinese Medicine, 2024, 44(3): 554-563. |
| [8] | HENG Xianpei, WANG Zhita, LI Liang, YANG Liuqing, HUANG Suping, JIN Lang, HE Weidong. Mechanisms of Dangua Fang (丹瓜方) in multi-target and multi-method regulation of glycolipid metabolism based on phosphoproteomics [J]. Journal of Traditional Chinese Medicine, 2024, 44(2): 334-344. |
| [9] | ZHANG Linlin, ZHONG Yumei, LU Wenting, SHANG Yanan, GUO Yanding, LUO Xiaochao, CHEN Yang, LUO Kun, HU Danhui, YU Huiling, ZHOU Haiyan. Moxibustion of Zusanli (ST36) and Shenshu (BL23) alleviates the inflammation of rheumatoid arthritis in rats through regulating macrophage migration inhibitory factor/glucocorticoids signaling [J]. Journal of Traditional Chinese Medicine, 2024, 44(2): 353-361. |
| [10] | LI Chaoran, YANG Yan, FENG Chuwen, LI Heng, QU Yuanyuan, WANG Yulin, WANG Delong, WANG Qingyong, GUO Jing, SHI Tianyu, SUN Xiaowei, WANG Xue, HOU Yunlong, SUN Zhongren, YANG Tiansong. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1176-1189. |
| [11] | WANG Miao, ZHU Yan, ZHAO Hui, ZHAO Hongfang. Moxibustion enables protective effects on rheumatoid arthritis-induced myocardial injury via transforming growth factor beta1 signaling and metabolic reprogramming [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1190-1199. |
| [12] | LI Xingjie, LIU Qiqi, XIA Rui, LIU Jun, WANG Dan, SHI Jiao, KUANG Yuxing, DAI Yalan, HUANG Haoyu, TANG Wei, CHEN Shangjie. Moxibustion modulates working memory in patients with amnestic mild cognitive impairment: a functional magnetic resonance imaging study [J]. Journal of Traditional Chinese Medicine, 2023, 43(4): 801-808. |
| [13] | MA Fangfang, ZHANG Hewei, LI Bingxue, CHENG Peiyu, YU Mingwei, WANG Xiaomin. Acupuncture and moxibustion for malignant tumor patients with psychological symptoms of insomnia, anxiety and depression: a systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(3): 441-456. |
| [14] | WANG Yide, GAO Zhen. Yinyanghuo (Herba Epimedii Brevicornus) and its components for chronic obstructive pulmonary disease: preclinical evidence and possible mechanisms [J]. Journal of Traditional Chinese Medicine, 2023, 43(2): 386-396. |
| [15] | MIN Youjiang, YAO Haihua, WANG Zhiqin, LUO Kaitao, SUN Jie, YUAN Zheng, WU Huiqi, CHENG Lihong. Efficacy of suspended moxibustion stimulating Shenshu (BL23) and Guanyuan (CV4) on the amygdala-HPA axis in rats with kidney-Yang deficiency symptom pattern induced by hydrocortisone [J]. Journal of Traditional Chinese Medicine, 2023, 43(1): 113-123. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.
