Journal of Traditional Chinese Medicine ›› 2023, Vol. 43 ›› Issue (2): 416-428.DOI: 10.19852/j.cnki.jtcm.20221214.001
• Review • Previous Articles
CHEN Zhimin1, AO Mingyue1, LIAO Yujiao1, YU Lingying1, YANG Zhuo2, HU Lin1, LI Wenbing3, HU Changjiang1(), GAO Yongxiang1()
Received:
2021-11-19
Accepted:
2022-03-17
Online:
2023-04-15
Published:
2023-03-14
Contact:
Prof. HU Changjiang, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. 654460129@qq.com;Prof. GAO Yongxiang, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.drgaoyx@cdutcm.edu.cn. Telephone: +86-15528352916
Supported by:
CHEN Zhimin, AO Mingyue, LIAO Yujiao, YU Lingying, YANG Zhuo, HU Lin, LI Wenbing, HU Changjiang, GAO Yongxiang. Wuzi Yanzong prescription (五子衍宗丸) from Traditional Chinese Medicine for male infertility: a narrative review[J]. Journal of Traditional Chinese Medicine, 2023, 43(2): 416-428.
Chemical component | Source | Type | Reference |
---|---|---|---|
Flavonoids | Tusizi (Semen Cuscutae) | 41 | |
Gouqizi (Fructus Lycii) | - | ||
Wuweizi (Fructus Schisandrae Chinensis) | 14 | ||
Fupenzi (Fructus Rubi Chingii) | 16 | ||
Cheqianzi (Semen Plantaginis) | 11, including flavonoids, flavonols and their glycosides | ||
Polysaccharides | Tusizi (Semen Cuscutae) | Including neutral heteropolysaccharide, H3 acid polysaccharide | |
Gouqizi (Fructus Lycii) | It's made up of six monosaccharides | ||
Wuweizi (Fructus Schisandrae Chinensis) | The polysaccharide content is 85.56%, which is composed of rhamnose, galactose, arabinose and glucose | ||
Cheqianzi (Semen Plantaginis) | It contains 10%-30% arabinose, xylose, mannose and galactose (5.6:9.4:1.3:1) | ||
Phenylethanoid glycosides | Cheqianzi (Semen Plantaginis) | 20,it is composed of caffeic acid, phenyl glycogen and glycogen | |
Iridoids | Cheqianzi (Semen Plantaginis) | 22 | |
Steroids | Tusizi (Semen Cuscutae) | 6, β-sitosterol, carotenoside, 7-α-hydroxy sitosterol, rape oleosterol, stigmastol, △ 5-oatmasterol | |
Fupenzi (Fructus Rubi Chingii) | 6 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Terpenoids | Tusizi (Semen Cuscutae) | 9 | |
Wuweizi (Fructus Schisandrae Chinensis) | 9 | ||
Fupenzi (Fructus Rubi Chingii) | 19 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Alkaloids | Tusizi (Semen Cuscutae) | 4 | |
Gouqizi (Fructus Lycii) | Betaine | ||
Fupenzi (Fructus Rubi Chingii) | 7 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Amino acid | Tusizi (Semen Cuscutae) | 15 | |
Gouqizi (Fructus Lycii) | 18 | ||
Wuweizi (Fructus Schisandrae Chinensis) | 16 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Acids | Tusizi (Semen Cuscutae) | 18 | |
Gouqizi (Fructus Lycii) | 18%-22% | ||
Wuweizi (Fructus Schisandrae Chinensis) | 14 | ||
Fupenzi (Fructus Rubi Chingii) | 8 | ||
Cheqianzi (Semen Plantaginis) | 5 | ||
Trace elements | Tusizi (Semen Cuscutae) | Ca, Mg, Fe, Mn, Zn, Pb, Sn, etc. | |
Wuweizi (Fructus Schisandrae Chinensis) | K, Ca, Zn, Fe, etc. | ||
Cheqianzi (Semen Plantaginis) | Fe, Mg, Al, Zn, etc. | ||
Lignans | Tusizi (Semen Cuscutae) | 29 | |
Wuweizi (Fructus Schisandrae Chinensis) | 31 (8%) | ||
Volatile components | Cuscutae Semen | 11 | |
Wuweizi (Fructus Schisandrae Chinensis) | 5%-6% | ||
Coumarins | Fupenzi (Fructus Rubi Chingii) | 4, including esculetin, esculin, imperatorin, hexacosylp-coumarate | |
Others | Cuscutae Semen | Thymine, arbutin, etc. | |
Gouqizi (Fructus Lycii) | Vitamins, 4-desmethylsterols, 4-methylsterols, 4'4-dimethylsterols, taurine, etc. | ||
Wuweizi (Fructus Schisandrae Chinensis) | neoisostegane, plaunol, gedunin, merulinic acid A, etc. | ||
Fupenzi (Fructus Rubi Chingii) | butyl dosocanoate, pentacosanol, liballino, 1H-2-indenone, etc. | ||
Cheqianzi (Semen Plantaginis) | Protein, Plantaginic Acid, Adenine, β-sitosterol, etc. |
Table 1 Chemical constituents of single drug in Wuzi Yanzong prescription
Chemical component | Source | Type | Reference |
---|---|---|---|
Flavonoids | Tusizi (Semen Cuscutae) | 41 | |
Gouqizi (Fructus Lycii) | - | ||
Wuweizi (Fructus Schisandrae Chinensis) | 14 | ||
Fupenzi (Fructus Rubi Chingii) | 16 | ||
Cheqianzi (Semen Plantaginis) | 11, including flavonoids, flavonols and their glycosides | ||
Polysaccharides | Tusizi (Semen Cuscutae) | Including neutral heteropolysaccharide, H3 acid polysaccharide | |
Gouqizi (Fructus Lycii) | It's made up of six monosaccharides | ||
Wuweizi (Fructus Schisandrae Chinensis) | The polysaccharide content is 85.56%, which is composed of rhamnose, galactose, arabinose and glucose | ||
Cheqianzi (Semen Plantaginis) | It contains 10%-30% arabinose, xylose, mannose and galactose (5.6:9.4:1.3:1) | ||
Phenylethanoid glycosides | Cheqianzi (Semen Plantaginis) | 20,it is composed of caffeic acid, phenyl glycogen and glycogen | |
Iridoids | Cheqianzi (Semen Plantaginis) | 22 | |
Steroids | Tusizi (Semen Cuscutae) | 6, β-sitosterol, carotenoside, 7-α-hydroxy sitosterol, rape oleosterol, stigmastol, △ 5-oatmasterol | |
Fupenzi (Fructus Rubi Chingii) | 6 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Terpenoids | Tusizi (Semen Cuscutae) | 9 | |
Wuweizi (Fructus Schisandrae Chinensis) | 9 | ||
Fupenzi (Fructus Rubi Chingii) | 19 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Alkaloids | Tusizi (Semen Cuscutae) | 4 | |
Gouqizi (Fructus Lycii) | Betaine | ||
Fupenzi (Fructus Rubi Chingii) | 7 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Amino acid | Tusizi (Semen Cuscutae) | 15 | |
Gouqizi (Fructus Lycii) | 18 | ||
Wuweizi (Fructus Schisandrae Chinensis) | 16 | ||
Cheqianzi (Semen Plantaginis) | - | ||
Acids | Tusizi (Semen Cuscutae) | 18 | |
Gouqizi (Fructus Lycii) | 18%-22% | ||
Wuweizi (Fructus Schisandrae Chinensis) | 14 | ||
Fupenzi (Fructus Rubi Chingii) | 8 | ||
Cheqianzi (Semen Plantaginis) | 5 | ||
Trace elements | Tusizi (Semen Cuscutae) | Ca, Mg, Fe, Mn, Zn, Pb, Sn, etc. | |
Wuweizi (Fructus Schisandrae Chinensis) | K, Ca, Zn, Fe, etc. | ||
Cheqianzi (Semen Plantaginis) | Fe, Mg, Al, Zn, etc. | ||
Lignans | Tusizi (Semen Cuscutae) | 29 | |
Wuweizi (Fructus Schisandrae Chinensis) | 31 (8%) | ||
Volatile components | Cuscutae Semen | 11 | |
Wuweizi (Fructus Schisandrae Chinensis) | 5%-6% | ||
Coumarins | Fupenzi (Fructus Rubi Chingii) | 4, including esculetin, esculin, imperatorin, hexacosylp-coumarate | |
Others | Cuscutae Semen | Thymine, arbutin, etc. | |
Gouqizi (Fructus Lycii) | Vitamins, 4-desmethylsterols, 4-methylsterols, 4'4-dimethylsterols, taurine, etc. | ||
Wuweizi (Fructus Schisandrae Chinensis) | neoisostegane, plaunol, gedunin, merulinic acid A, etc. | ||
Fupenzi (Fructus Rubi Chingii) | butyl dosocanoate, pentacosanol, liballino, 1H-2-indenone, etc. | ||
Cheqianzi (Semen Plantaginis) | Protein, Plantaginic Acid, Adenine, β-sitosterol, etc. |
Dosage form | Control ingredients and medicinal materials | Developing solvent | Reference |
---|---|---|---|
Wuzi Yanzong Wan | Scopoletin | Petroleum ether (30-60)-ethyl formate-formic acid (20:20:0.1) | Chinese Pharmacopoeia (2020) |
Wuweizi (Fructus Schisandrae Chinensis), Schisandrin | Methylbenzene-ethyl acetate (6:4) | ||
Gouqizi (Fructus Lycii) | Ethyl acetate-trichloromethane-formic acid (3:2:1) | Xin Yao Zhuan Zheng Biao Zhun | |
Tusizi (Semen Cuscutae) | Petroleum ether (30-60)-butyl acetate-butanone-methyl alcohol-water (15:25:3:7:1) | ||
Schisandrin A | Methylbenzene-ethyl acetate (9:1) | ||
Gallic acid | Methylbenzene-ethyl acetate-formic acid (6:3:1) | ||
Wuzi Yanzong Pian | Tusizi (Semen Cuscutae) | Methylbenzene-ethyl acetate-formic acid (5:5:3) | Chinese Pharmacopoeia (2020) |
Scopoletin | Petroleum ether (30-60)-ethyl formate-formic acid (20:20:0.1) | ||
Wuweizi (Fructus Schisandrae Chinensis), Gomisin A | Methylbenzene-ethyl acetate (6:4) | ||
Wuzi Yanzong Ruanjiaonang | Gouqizi (Fructus Lycii) | Petroleum ether (60-90)-ethyl acetate-formic acid (13:5:1) | Xin Yao Zhuan Zheng Biao Zhun |
Tusizi (Semen Cuscutae) | Methylbenzene-ethyl acetate-formic acid (5:5:3) | ||
Schisandrin A, Schisandrin | Petroleum ether (30-60)-ethyl acetate-formic acid (15:5:1) | Xin Yao Zhuan Zheng Biao Zhun | |
Gouqizi (Fructus Lycii) | Acetate-trichloromethane-formic acid (2:3:0.1) | ||
Quercetin | Acetate-trichloromethane-formic acid (26:13:5) | ||
Wuzi Yanzong Jiaonang | Gouqizi (Fructus Lycii) | Trichloromethane-ethyl acetate-benzene-formic acid (5:6:3:1) | Xin Yao Zhuan Zheng Biao Zhun |
Wuweizi (Fructus Schisandrae Chinensis) | Petroleum ethe (30-60)-ethyl acetate-formic acid (15:5:1) | ||
Wuzi Yanzong Koufuye | Gouqizi (Fructus Lycii) | Trichloromethane-ethyl acetate-benzene-formic acid (5:6:3:1) | Zhong Yao Cheng Fang Zhi Ji |
Table 2 TLC identification of Wuzi Yanzong prescription
Dosage form | Control ingredients and medicinal materials | Developing solvent | Reference |
---|---|---|---|
Wuzi Yanzong Wan | Scopoletin | Petroleum ether (30-60)-ethyl formate-formic acid (20:20:0.1) | Chinese Pharmacopoeia (2020) |
Wuweizi (Fructus Schisandrae Chinensis), Schisandrin | Methylbenzene-ethyl acetate (6:4) | ||
Gouqizi (Fructus Lycii) | Ethyl acetate-trichloromethane-formic acid (3:2:1) | Xin Yao Zhuan Zheng Biao Zhun | |
Tusizi (Semen Cuscutae) | Petroleum ether (30-60)-butyl acetate-butanone-methyl alcohol-water (15:25:3:7:1) | ||
Schisandrin A | Methylbenzene-ethyl acetate (9:1) | ||
Gallic acid | Methylbenzene-ethyl acetate-formic acid (6:3:1) | ||
Wuzi Yanzong Pian | Tusizi (Semen Cuscutae) | Methylbenzene-ethyl acetate-formic acid (5:5:3) | Chinese Pharmacopoeia (2020) |
Scopoletin | Petroleum ether (30-60)-ethyl formate-formic acid (20:20:0.1) | ||
Wuweizi (Fructus Schisandrae Chinensis), Gomisin A | Methylbenzene-ethyl acetate (6:4) | ||
Wuzi Yanzong Ruanjiaonang | Gouqizi (Fructus Lycii) | Petroleum ether (60-90)-ethyl acetate-formic acid (13:5:1) | Xin Yao Zhuan Zheng Biao Zhun |
Tusizi (Semen Cuscutae) | Methylbenzene-ethyl acetate-formic acid (5:5:3) | ||
Schisandrin A, Schisandrin | Petroleum ether (30-60)-ethyl acetate-formic acid (15:5:1) | Xin Yao Zhuan Zheng Biao Zhun | |
Gouqizi (Fructus Lycii) | Acetate-trichloromethane-formic acid (2:3:0.1) | ||
Quercetin | Acetate-trichloromethane-formic acid (26:13:5) | ||
Wuzi Yanzong Jiaonang | Gouqizi (Fructus Lycii) | Trichloromethane-ethyl acetate-benzene-formic acid (5:6:3:1) | Xin Yao Zhuan Zheng Biao Zhun |
Wuweizi (Fructus Schisandrae Chinensis) | Petroleum ethe (30-60)-ethyl acetate-formic acid (15:5:1) | ||
Wuzi Yanzong Koufuye | Gouqizi (Fructus Lycii) | Trichloromethane-ethyl acetate-benzene-formic acid (5:6:3:1) | Zhong Yao Cheng Fang Zhi Ji |
Dosage form | Determination of components | Detection method (wavelength) | Reference |
---|---|---|---|
Wuzi Yanzong Wan | Hyperoside, Gomisin A | HPLC (360, 250 nm) | Chinese Pharmacopoeia (2020) |
Hyperoside, Kaempferide, Schisandrin, Schisandrin A, Schisandrin B | HPLC/PDA (360, 250 nm) | ||
Hyperoside, Quercitrin, kaempferol-3-rutinoside, Schisandrin, Schisandrin A, Schisandrin B | HPLC/PDA (254 nm) | ||
Betaine | HPLC (192 nm) | ||
Scopoletin | HPLC-FLD (343 nm,458 nm) | ||
Wuzi Yanzong Pian | Hyperoside, Gomisin A | HPLC (360,250 nm) | Chinese Pharmacopoeia (2020) |
Schisandrin A | HPLC (230 nm) | Xin Yao Zhuan Zheng Biao Zhun | |
Wuzi Yanzong Jiaonang | Schisandrin | HPLC (254 nm) | Xin Yao Zhuan Zheng Biao Zhun |
Wuzi Yanzong Keli | Rutin | HPLC (254 nm) | Xin Yao Zhuan Zheng Biao Zhun |
Table 3 HPLC methods developped for quantitative determination of Wuzi Yanzong prescription
Dosage form | Determination of components | Detection method (wavelength) | Reference |
---|---|---|---|
Wuzi Yanzong Wan | Hyperoside, Gomisin A | HPLC (360, 250 nm) | Chinese Pharmacopoeia (2020) |
Hyperoside, Kaempferide, Schisandrin, Schisandrin A, Schisandrin B | HPLC/PDA (360, 250 nm) | ||
Hyperoside, Quercitrin, kaempferol-3-rutinoside, Schisandrin, Schisandrin A, Schisandrin B | HPLC/PDA (254 nm) | ||
Betaine | HPLC (192 nm) | ||
Scopoletin | HPLC-FLD (343 nm,458 nm) | ||
Wuzi Yanzong Pian | Hyperoside, Gomisin A | HPLC (360,250 nm) | Chinese Pharmacopoeia (2020) |
Schisandrin A | HPLC (230 nm) | Xin Yao Zhuan Zheng Biao Zhun | |
Wuzi Yanzong Jiaonang | Schisandrin | HPLC (254 nm) | Xin Yao Zhuan Zheng Biao Zhun |
Wuzi Yanzong Keli | Rutin | HPLC (254 nm) | Xin Yao Zhuan Zheng Biao Zhun |
Dosage form | Detection Method (Wavelength) | Total chromatographic peak number | Chromatographic peak identification | Reference |
---|---|---|---|---|
Wuzi Yanzong Wan | HPLC (250 nm) | 5 | Hyperoside, Verbascoside, Kaempferide, Schisandrin | Chinese Pharmacopoeia (2020) |
HPLC (254 nm) | 18 | Hyperoside, Isoquercitrin, Kaempferol, Verbascoside, Astragalin, Gomisin A | ||
HPLC-DAD (254 nm) | 24 | Gallic acid, geniposidic acid, Chlorogenic acid, Hyperoside, Isoquercitrin, Verbascoside, Kaempferol-3-rutinoside, Isoverbascoside | ||
HPLC/PDA (360, 250 nm) | 11 | Chlorogenic acid, Hyperoside, Quercetin, Kaempferide,Verbascoside, Astragalin, Schisandrin, Gomisin A, Schisandrin A, Schisandrin B | ||
HPLC/PDA (254 nm) | 10 | Chlorogenic acid, Hyperoside, Verbascoside, Kaempferol, Schisandrin, Schisandrin A, Schisandrin B, Astragalin, Quercetin |
Table 4 HPLC methods developed for fingerprint or specific chromatogram analysis of Wuzi Yanzong prescription
Dosage form | Detection Method (Wavelength) | Total chromatographic peak number | Chromatographic peak identification | Reference |
---|---|---|---|---|
Wuzi Yanzong Wan | HPLC (250 nm) | 5 | Hyperoside, Verbascoside, Kaempferide, Schisandrin | Chinese Pharmacopoeia (2020) |
HPLC (254 nm) | 18 | Hyperoside, Isoquercitrin, Kaempferol, Verbascoside, Astragalin, Gomisin A | ||
HPLC-DAD (254 nm) | 24 | Gallic acid, geniposidic acid, Chlorogenic acid, Hyperoside, Isoquercitrin, Verbascoside, Kaempferol-3-rutinoside, Isoverbascoside | ||
HPLC/PDA (360, 250 nm) | 11 | Chlorogenic acid, Hyperoside, Quercetin, Kaempferide,Verbascoside, Astragalin, Schisandrin, Gomisin A, Schisandrin A, Schisandrin B | ||
HPLC/PDA (254 nm) | 10 | Chlorogenic acid, Hyperoside, Verbascoside, Kaempferol, Schisandrin, Schisandrin A, Schisandrin B, Astragalin, Quercetin |
Pharmacological activity | Testing subject | Dosage | Effect | Reference |
---|---|---|---|---|
Effects on spermatogenesis | Oxidative damage of testis in mice | 2, 4 g·kg-1·d-1,35 d | Significantly antagonize the testicular oxidative injury and spermatogenic cell apoptosis induced by cyclophosphamide | |
Mice with oligospermia | 1.56 g·kg-1·d-1, 14 d | Regulate the meiosis of spermatogenic cells, homologous recombination of testis, renin-angiotensin recombination of testis, renin-angiotensin system, cholesterol metabolism pathway and others,so as to repair the blocking of testicular spermatogenesis,by affecting the gene expression of testis tissue in mice with oligospermia | ||
AT1KO mouse | 5.8 g/kg, 2 times a day | Has a positive regulatory effect on the sex hormone levels of male AT1+/- mice, increasing the levels of GnRH and FSH, and the degree of improvement is positively correlated with the intervention time, improving the reproductive function of male mice | ||
Testicular tissue of rats with kidney essence deficiency | 0.01 mL/g, 30 d | Can reduce the apoptosis of spermatogenic cells in rat testis by inhibiting Bax and promoting the expression of Bcl-2 protein | ||
Effects on sperm quality | Rat with oligospermia | 1.96 g·kg-1·d-1, 60 d | Can correct HPG secretion disorder and improve sperm quality | |
Effects on Sertoli cells | Mouse Testis TM4 Sertoli Cells | 12.0 g/kg, 2 times a day, 7 d | Serum can improve the secretory function of TM4 Sertoli cells by regulating the levels of ROS and autophagy | |
Human testicular support cell line TM4 cells | 0.2, 1.0, 5.0 mg/mL | Can improve oxidative stress injury of testicular support cells and inhibit cell apoptosis | ||
Heat stress model of rat Sertoli cells | 20 g/L | Can reduce the generation of reactive oxygen species and the expression of heat shock protein 70 to protect heat stress | ||
Effects on sperm mitochondria | Rats with Oligoasthenozoospermia | 1, 2, 4 g·kg-1·d-1, 28 d | Can inhibit the opening of mitochondrial permeability transition pore (MPTP), improve the quality of spermatozoa, and reduce the apoptosis rate of spermatogenic cells (including spermatozoa) | |
Rats with Oligoasthenozoospermia | 4.0g·kg-1·d-1, 28 d | Can down-regulate the expression of Bax,VDAC1 and CypD proteins in rat testicular tissue, inhibit the over-opening of mPTP, and prevent the germ cell apoptosis caused by the activation of Caspase protein family |
Table 5 Effects on the male reproductive system of Wuzi Yanzong prescription
Pharmacological activity | Testing subject | Dosage | Effect | Reference |
---|---|---|---|---|
Effects on spermatogenesis | Oxidative damage of testis in mice | 2, 4 g·kg-1·d-1,35 d | Significantly antagonize the testicular oxidative injury and spermatogenic cell apoptosis induced by cyclophosphamide | |
Mice with oligospermia | 1.56 g·kg-1·d-1, 14 d | Regulate the meiosis of spermatogenic cells, homologous recombination of testis, renin-angiotensin recombination of testis, renin-angiotensin system, cholesterol metabolism pathway and others,so as to repair the blocking of testicular spermatogenesis,by affecting the gene expression of testis tissue in mice with oligospermia | ||
AT1KO mouse | 5.8 g/kg, 2 times a day | Has a positive regulatory effect on the sex hormone levels of male AT1+/- mice, increasing the levels of GnRH and FSH, and the degree of improvement is positively correlated with the intervention time, improving the reproductive function of male mice | ||
Testicular tissue of rats with kidney essence deficiency | 0.01 mL/g, 30 d | Can reduce the apoptosis of spermatogenic cells in rat testis by inhibiting Bax and promoting the expression of Bcl-2 protein | ||
Effects on sperm quality | Rat with oligospermia | 1.96 g·kg-1·d-1, 60 d | Can correct HPG secretion disorder and improve sperm quality | |
Effects on Sertoli cells | Mouse Testis TM4 Sertoli Cells | 12.0 g/kg, 2 times a day, 7 d | Serum can improve the secretory function of TM4 Sertoli cells by regulating the levels of ROS and autophagy | |
Human testicular support cell line TM4 cells | 0.2, 1.0, 5.0 mg/mL | Can improve oxidative stress injury of testicular support cells and inhibit cell apoptosis | ||
Heat stress model of rat Sertoli cells | 20 g/L | Can reduce the generation of reactive oxygen species and the expression of heat shock protein 70 to protect heat stress | ||
Effects on sperm mitochondria | Rats with Oligoasthenozoospermia | 1, 2, 4 g·kg-1·d-1, 28 d | Can inhibit the opening of mitochondrial permeability transition pore (MPTP), improve the quality of spermatozoa, and reduce the apoptosis rate of spermatogenic cells (including spermatozoa) | |
Rats with Oligoasthenozoospermia | 4.0g·kg-1·d-1, 28 d | Can down-regulate the expression of Bax,VDAC1 and CypD proteins in rat testicular tissue, inhibit the over-opening of mPTP, and prevent the germ cell apoptosis caused by the activation of Caspase protein family |
1. |
Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med 2012; 9: e1001356.
DOI URL |
2. | Tang W, Hu DX. Application and progress of stem cells in male infertility. Di San Jun Yi Da Xue Xue Bao 2019; 41:1897-901. |
3. | Li L, Wang TS. Historical changes and modern pharmacological research of Wuziyanzong pill. Zhong Yi Yao Lin Chuang Za Zhi 2018; 30: 608-11. |
4. | Han DC. Representative prescription for tonifying kidney-Wuziyanzong pill. Zhong Hua Zhong Yi Yao Za Zhi 2017; 22: 26. |
5. | Xu HJ, Liu Q, Guo YL, Gao F, Li M, Wei PF. Research progress of Wuzi Yanzong pill in the treatment of male infertility oligoasthenospermia. Liaoning Zhong Yi Yao Da Xue Xue Bao 2020; 22: 149-53. |
6. | Wang YY, Wang L, Qi YX, Liu Q, Zhang YQ. Research progress on chemical constituents of Cuscutae Semen. Shandong Zhong Yi Yao Da Xue Xue Bao 2020; 44: 705-12. |
7. | Zhang F, Guo S, Qian DW, Zhang X, Zhang WH, Duan JA. Research and development status and prospect analysis of multiple types of small molecule chemicals in Lycium barbarum. Zhong Cao Yao 2016; 39: 2917-21. |
8. | Bai WY, Wang HE, Wang BY, Yu HS, Li Z. Research progress on chemical constituents and pharmacological effects of Schisandra chinensis. Zhong Cheng Yao 2019; 41: 2177-83. |
9. | Cheng D, Li J, Zhou B, Zhen PW. Research progress on chemical constituents and pharmacological effects of Rubi Fructus. Zhong Yao Cai 2012; 35: 1873-76. |
10. | Li CC, Gong SX, Xu J, et al. Research progress on chemical constituents and pharmacological effects of Semen Plantaginis and prediction analysis of quality markers. Zhong Cao Yao 2018; 49: 1233-46. |
11. | Xu S, Xu WF, Liang XL, Wu XJ, Jin PF. Research progress on chemical constituents and biological activities of Semen Plantaginis. Xi Bei Yao Xue Za Zhi 2019; 34: 567-70. |
12. | Fu WH, Yu M. Research progress of Gouqizi (Fructus Lycii). Shi Jie Zui Xin Yi Xue Xin Xi Wen Zhai 2017; 17: 104. |
13. | Li SS, Qi YL, Hua M, Sun YS. Separation, purification and antioxidant activity of polysaccharides from Schisandra chinensis. Shi Pin Gong Ye 2018; 39: 233-7. |
14. | Cui L, Zheng ZQ. Research progress on chemical constituents and pharmacological effects of Rubi Fructus. Quan Ke Kou Qiang Yi Xue Dian Zi Za Zhi 2020; 7: 192+6. |
15. |
Zhang Q, Chen W, Zhao J, Xi W. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chem 2016; 200: 230-6..
DOI PMID |
16. | Yang Q, Qu XB, Li H, et al. Research progress on chemical constituents and pharmacological effects of Schisandra chinensis. Jilin Zhong Yi Yao 2015; 35: 626-8. |
17. | Zhang HH, Huang JP, Li W, et al. Evaluation of Wuzi Yanzong decoction in the treatment of mild cognitive dysfunction in Parkinson's disease with kidney deficiency and marrow reduction. Zhejiang Zhong Xi Yi Jie He Za Zhi 2016; 26: 998-1001. |
18. | Xie M, Yang SS, Wang LL, Li L, Wang XY. Research progress of Plantaginis Semen. Heilongjiang Yi Yao 2015; 28: 474-6. |
19. |
Xiang SX, He ZS, Ye Y. Four furan lignans from Cuscuta chinensis. Chin J Chem 2010; 19: 282-5.
DOI URL |
20. | Tan W, Huang XH, Fu TT, Qiu WZ, Min CY, Wang CJ. Analysis of fatty acids in Wuzi Yanzong pills by GC-MS. Xian Dai Yi Yuan 2016; 16: 1186-8 + 91. |
21. |
Zou DX, Wang JF, Zhang B, et al. Analysis of chemical constituents in Wuzi-Yanzong-Wan by UPLC-ESI-LTQ-Orbitrap-MS. Molecules 2015; 20: 21373-404.
DOI PMID |
22. | Yan JN, Hu C, Meng XL. Pharmacodynamic mechanism of Wuzi Yanzong pill based on network pharmacology. Shi Jie Ke Xue Ji Shu 2020; 22: 2294-310. |
23. | Zhou JL, Liu W, Tan CM, Zhu Ming, Ma SC. Study on quality control standard of Wuzi Yanzong pills. Zhong Guo Yao Xue Za Zhi 2015; 50: 125-130. |
24. | He CX, Yuan D, He YM, et al. Application of multiple evaluation method in quality control of Wuzi Yanzong pills. Zhong Cao Yao 2017; 48: 3754-9. |
25. | Cai JA. Determination of betaine in Wuzi Yanzong pills by HPLC. Zhong Guo Zhong Yi Yao Xin Xi Za Zhi 2011; 18: 57-8. |
26. | Zhou JL, Liu W, Chen BL, Zhu M. Determination of scopoletin in Gouqizi and Wuziyanzong pills by HPLC with fluorescence detection. Zhong Guo Xian Dai Ying Yong Yao Xue 2015; 32: 482-6. |
27. | Dong QJ, Zhou Y, Feng W, et al. Application of fingerprint combined with multiple evaluation method in quality evaluation of Wuzi Yanzong pills. Zhong Yao Cai 2019; 42: 579-83. |
28. | Dong QJ, Wang XG, Niu LY, Feng W. Study on fingerprints of Wuzi Yanzong prescription-medicinal materials based on peak pattern matching. Zhong Cao Yao 2017; 48: 1153-8. |
29. | Liu W, Zhou JL, Chen BL, Zhu M. Study on HPLC fingerprint of Wuzi yanzong Pills. Yi Xue Dao Bao 2014; 33: 1360-4. |
30. | Liu MM, Zhang CC, Jia LL, et al. Protective effect of Wuzi Yanzong recipe on oxidative damage of testis in mice induced by cyclophosphamide. Zhong Cheng Yao 2013; 35: 2591-7. |
31. | Meng XD, Zhao CJ, Zhao X, et al. Effect of Wuzi Yanzong Wan on testicular gene expression profile of mice with oligospermia. Huan Qiu Zhong Yi Yao 2020; 13: 1653-60. |
32. | Zou Y, Zhao FF, Li H, et al. Intervention of Wuzi Yanzong pills on the reproductive function of AT1KO male mice. Shanghai Zhong Yi Yao Za Zhi 2020; 54: 97-100. |
33. | Liao YJ, Zhang X, Ao MY, Hu CJ, Chen ZM, Xu RC. Effect of prescription on spermatogenic cell apoptosis in rats after preparation of drug salt contained in Wuziyanzong pill. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2021; 27: 1-7. |
34. | Yan RH, Huo JF, Dong AG, Wang YH, Liang Q. Comparative study on the effect of reproductive nutrition capsule and Wuzi Yanzong pill on reproductive function of drug-induced oligospermia model. Zhong Hua Zhong Yi Yao Xue Kan 2015; 33: 1215-7+99. |
35. | Cui TW, Liu BX, Qin M, Zhang XP, Gao YX. The effect of Wuzi Yanzong pills containing serum on the secretory function and autophagy of mouse Sertoli cells. Zhong Hua Zhong Yi Yao Za Zhi 2107; 32: 549-52. |
36. | Yin JL, Xu Y, Wu B. The effect of Wuzi Yanzong compound on oxidative stress injury and apoptosis of testicular Sertoli cells. Zhong Hua Nan Ke Xue Za Zhi 2013; 19: 257-61. |
37. | Liu SJ, Chen YC, Hu SQ, Li CR, Guo J. Protective effect and mechanism of Wuzi Yanzong pill on testis of heat stressed rats. Beijing Zhong Yi Yao Da Xue Xue Bao 2020; 43: 386-92. |
38. | Li L, Dai Ni, Na S, et al. Protective effect and mechanism of Wuzi Yanzong pills on experimental oligoasthenospermia rats. Zhong Hua Nan Ke Xue Za Zhi 2016; 22: 827- 33. |
39. | Liu HJ, Wu DL, Tong XH, Li L, Wang TS. Mechanism of Wuzi Yanzong pills interfering with mitochondrial permeability transition pore to inhibit sperm apoptosis. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2020; 26: 34-9. |
40. | Chen Y, Fu ZY, Zhang YG, Peng JL. Wuzi Yanzong Wan regulates the S100A11 gene during implantation in GnRHa controlled hyperovulation mice. Zhong Yi Yao Dao Bao 2014; 20: 14-7. |
41. | Wang YX, Ma N, Zhong XM, Cui R, Miao ZL. Study on the effect of total flavonoids of Cuscuta on ovarian function in rats with premature ovarian failure. Yi Xue Zong Shu 2019; 25: 2695-9. |
42. | Miao MS, Peng MF, Yan XL, et al. The effect of total flavonoids of Cuscuta on the rat model of polycystic ovary syndrome induced by letrozole. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2109; 25: 17-23. |
43. |
Zeng KW, Zhang T, Fu H, Liu GX, Wang XM. Modified Wu-Zi-Yan-Zong prescription, a traditional Chinese polyherbal formula, suppresses lipopolysaccharide-induced neuroinflammatory processes in rat astrocytes via NF-κB and JNK/p38 MAPK signaling pathways. Phytomedicine 2012; 19: 122-9.
DOI URL |
44. | Zhang RN, Chai Z, Fan HJ, et al. Study on the prevention and treatment effects of Wuzi Yanzong pills on mice with experimental autoimmune encephalomyelitis and its mechanism. Zhong Hua Zhong Yi Yao Za Zhi 2018; 33: 1316-9. |
45. | Sun MY, Fan HJ, Chai Z, et al. Effect of Wuziyanzong Wan on neurotrophic factor secreted by astrocytes in demyelinating mice. Zhong Yi Za Zhi 2021; 62:712-6. |
46. | Liu X, Sun MY, Xue JY, Li YR, Fan HJ, Chai Z. Inhibitory effect of Wuziyanzong pill on inflammatory response in demyelinating model. Zhong Hua Zhong Yi Yao Za Zhi 2021; 36: 2904-8. |
47. | Li YL, Fan HJ, Chai Z, et al. Neuroprotective and anti-inflammatory effects of Wuzi Yanzong pills on Parkinson's disease mice. Zhong Hua Zhong Yi Yao Za Zhi 2020; 35: 3623-6. |
48. | Li RX, Fan HJ, Cai Z, et al. Effects of Wuzi Yanzong pills (五子衍宗丸) on the apoptotic pathway of neural tube defects cell model. Zhong Yi Za Zhi 2019; 60: 1134-41. |
49. | Song FJ, Zeng KW, Yu Q, Song YX, Tu PF, Wang XM. Study of modified Wuzi-Yanzong prescription's effect on gene expression profile of SAMP8 mice brain based on gene microarray. Zhong Guo Yao Xue Za Zhi 2015; 50: 1874-9. |
50. | Yang CJ, Fan HJ, Chai Z, et al. Mechanism of Wuzi Yanzong pill in preventing neural tube malformation. Zhong Guo Zhong Yi Ji Chu Yi Xue Za Zhi 2021; 27: 1887-91. |
51. | Chen WC, Tan LH, Li L. Analysis of patent information of Traditional Chinese Medicine for the treatment of urinary system diseases in China. Zhong Guo Fa Ming Yu Zhuan Li 2021; 18: 44-9. |
52. |
Bae S, Lee KW, Jeong HC, et al. Effects of a combination of herbal extracts [modified Ojayeonjonghwan (Wuzi Yanzong wan)] on partial urethral obstruction-induced detrusor overactivity in rats: impact on the nitric oxide pathway and oxidative stress. BMC Complement Altern Med 2019; 19: 64.
DOI |
53. | Ge ZY, Jin L, He FJ, Dong XX, Li HK, Liu JX. Experimental study of Wuziyanzong pill on oligospermia model rats. Sheng Zhi Yi Xue Za Zhi 2010; 19: 224-7. |
54. | Zhang X, Liao YJ, Yang Z, Chen ZM, Li WB, Hu CJ. Study on the changes of chemical components and pharmacodynamics of Rubi Fructus before and after salt preparation. Shi Zhen Guo Yi Guo Yao 2020; 31: 82-4. |
55. | Wu QM, Ni HX, Lu X, Yuan X, Luo YY, Jin YM. Kaempferol delays kidney injury in mice with spontaneous obesity type 2 dia-betes mellitus. Xin Nao Xin Guan Bing Fang Zhi 2017; 17: 19-22. |
56. | Tang LH, Fang C, Wang HR, Tang SG. Protective effects of kaempferol on renal function and histopathological damage in rats with diabetic nephropathy induced by high glucose. Mian Yi Xue Za Zhi 2018; 34: 1041-6. |
57. | Qiu SJ. The protective effect and mechanism of ISO rhamnin on diabetic rats. Jinan: Shandong University, 2017: 35-46. |
58. | Han GF, Zhang CC, Chen X, Chen YQ, Yuan D, Zhao HX. Extraction of total polysaccharides from Wuzi Yanzong prescription and its protective effect on liver injury. Shi Zhen Guo Yi Guo Yao 2017; 28: 549-51. |
59. | Liu ZC, Zhao HX, Chen X, Liu GY, Yuan D, Zhang CC. Protective effect and mechanism of Wuzi-Yanzong prescription against the liver injury induced by cyclophosphamide. Zhong Guo Quan Ke Yi Xue 2017; 20: 3426-30. |
60. | Yang Z, Zhang X, Hu CJ. The effect of Wuzi Yanzong pills on the immune function of rats with kidney essence deficiency after being prepared with salt. Shi Zhen Guo Yi Guo Yao 2019; 30: 2134-7. |
61. | Zhu XD, Wang Y. Effect of Wuzi Yanzong pill on lens oxidative damage and polyol pathway in diabetic cataract mice. Zhong Yi Yan Jiu 2013; 26: 66-9. |
62. | Yuan Y, Wang XH. The effect of Wuzi Yanzong pills on anti-fatigue and hypoxia tolerance in mice. Yao Xue Shi Jian Za Zhi 2008; 26: 430-1. |
63. | Fu TT, Li J, Wang CJ, Tan W. Study on the mechanism of Wuzi Yanzong pill interfering with SIRT1 signal pathway to regulate tumor related fatigue. Zhong Yao Cai 2017; 40: 2657-62. |
64. | Li JJ, Dong L, Tan K, Yu Yan, Yu XJ, Yang F. Clinical study on improving sperm DNA integrity damage by tonifying the kidney and activating blood circulation. Ya Tai Chuan Tong Yi Yao 2021; 17: 79-83. |
65. | Li H, Yu XJ, Yang F, Dong L, Tan K, Li JJ. Clinical study on 64 cases of male infertility treated with Wuzi Yanzong pill. Zhong Guo Xing Ke Xue 2020; 29: 123-6. |
66. | Yu WH, Zhan JF, Chen R. Clinical study of Jinshuibao capsule and Wuziyanzong pill in the treatment of male idiopathic oligoasthenospermia. Xin Zhong Yi 2021; 53: 88-92. |
67. | Yang D, Xian H, Teng WD, Cheng QJ. Clinical efficacy and safety of Wuzi Yanzong pill and Qilin pill in the treatment of male idiopathic oligoasthenospermia. Zhong Guo Xing Ke Xue 2019; 28: 77-80. |
68. | Li YC, Pan ES, Chen CP. Effect of Shengjing Zhongyu decoction on oligospermia and asthenospermia infertility and its influence on caspase 3 and caspase 8 in semen. Shi Jie Zhong Yi Yao 2019; 14: 2359-62+6. |
69. | Tan WJ, Han WW, Yan L. Clinical observation of Shugan Yiyang capsule in the treatment of abnormal semen liquefaction. Zhong Cheng Yao 2018; 40: 1227-30. |
70. | Zhang LJ, Luan HT. Modified Wuzi Yanzong pills in the treatment of 86 cases of adolescent dysfunctional uterine bleeding. Hebei Zhong Yi 2012; 34: 56-7. |
71. | Sun QF. Clinical study on Wuzi Yanzong pills in the treatment of ovulation dysfunction infertility. Jilin Zhong Yi Yao 2012; 32: 1243-4. |
72. | Wang K, Wang J, Liu XJ, Ma AW. The effect of Wuzi Yanzong pills on the endocrine and metabolism of infertility patients caused by luteal insufficiency due to kidney deficiency and essence deficiency. Zhong Yao Cai 2021; 44: 720-3. |
73. | Zhang LM, Liao BN, Zhou HG, Niu CQ. Jiawei Wuzi Yanzong pills in the treatment of female infertility caused by luteal insufficiency due to kidney deficiency and essence deficiency. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2017; 23: 197-202. |
74. | Li LR, Zhang XF, Pan SJ. Observation on the efficacy of Wuzi Yanzong pills combined with western medicine in the treatment of anovulatory infertility. Zhong Yi Lin Chuang Yan Jiu 2014; 6: 4-5. |
75. | HHe JQ, Liu FP, Huang YL, Deng LJ, Huang LH. Pregnancy promoting effect of Wuziyanzong pill combined with Western Medicine on patients with ovulatory infertility. Shi Jie Zhong Yi Yao 2021; 16: 1463-7. |
76. | Li WW, Wang LL, Fu H, Liu GX, Wang XM. Research status of neuroprotective mechanism of Jiawei Wuzi Yanzong formula. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2105; 21: 219-23. |
77. | Pan M, Li YJ, Wang HY. Wuzi Yanzong pills for the treatment of female urinary incontinence. Zhong Guo Lin Chuang Yan Jiu 2011; 24: 632-3. |
78. | Li L, Sun YX, Ma JY, Ning SS, Li Y. Clinical observation of compound Wuzi oral liquid in the treatment of female urethral syndrome. Shanghai Zhong Yi Yao Za Zhi 2018; 52: 62-4+ 8. |
79. | Wang XD. Clinical observation of Huangkui capsule combined with Wuziyanzong pill in the treatment of IgA nephropathy proteinuria damp heat syndrome. Shi Yong Zhong Yi Yao Za Zhi 2017; 33: 618-9. |
80. | Li G. Clinical observation on Wuzi Yanzong pill combined with moxibustion in the treatment of enuresis in children with deficiency cold syndrome of lower Yuan Dynasty. Shenzhen Zhong Xi Yi Jie He Za Zhi 2020; 30: 38-40. |
81. | Guo L. Clinical observation of Wuzi Yanzong pill combined with Western Medicine in the treatment of lung kidney Qi (Yang) deficiency in stable stage of chronic obstructive pulmonary disease. Beijing Zhong Yi Yao 2016; 35: 78-80. |
82. | Cao S, Li YP, Wu P, Tong L. Clinical research progress of Wuzi Yanzong pill. Ya Tai Chuan Tong Yi Yao 2017; 13: 55-6. |
83. | Ji LN, Zhang XY, Liang ZY, Shi BZ. Study on the effect of Jiawei Wuzi Yanzong pills on the outcome of assisted pregnancy in patients with low ovarian response. Zhong Guo Shi Yan Fang Ji Xue Za Zhi 2021; 27: 106-10. |
84. | Liu GN. Clinical efficacy analysis of Wuziyanzong pill in the treatment of liver injury after chemotherapy. Haerbin: Heilongjiang University of Traditional Chinese Medicine, 2018: 16-23. |
85. | Wang XL, Fan HJ, Chai Z, et al. Research progress in the mechanism of common monomers in Wuzi Yanzong pills on central nervous system diseases. Zhong Hua Zhong Yi Yao Xue Kan 2021; 39, 166-70. |
86. | Li GL. The mitigation effect of quercetin on the damage of diethylstilbestrol-induced spermatogenesis in hamsters. Baoding: Hebei Agricultural University, 2010: 15-22. |
87. | Zhang YW, Shao DY, Shi JL, Zhu J, Huang QS, Yang H. Research progress in the biological function of kaempferol. Sheng Ming Ke Xue 2017; 29: 400-5. |
88. | Wang HJ, Guo HJ, Zhang XY. The effect of kaempferol on HepG2 cell apoptosis. Wei Chang Bing Xue He Gan Bing Xue Za Zhi 2018; 27: 617-22. |
89. | Zhang YH, Li CM. Estrogen-like functions of phytosterols and their effects on animal reproduction and development. Xu Mu Yu Shou Yi 2011; 43: 103-7. |
90. | Hao HX, Xie XM, He JB. The effect of plant sterols on the growth and reproductive hormones of KM female mice. Xian Dai Xu Mu Shou Yi 2014; 305: 19-22. |
[1] | ZHI Guoguo, SHAO Bingjie, ZHENG Tianyan, JI Shaoxiu, LI Jingwei, DANG Yanni, LIU Feng, WANG Dong. Efficacy of Ganshuang granules (肝爽颗粒) on non-alcoholic fatty liver and underlying mechanism: a network pharmacology and experimental verification [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 122-130. |
[2] | YANG Ye, CHEN Xiaoyang, YAO Junkai, HU Yueyao, WANG Wei. Efficacy of Danlou tablet (丹蒌片) on myocardial ischemia/ reperfusion injury assessed by network pharmacology and experimental verification [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 131-144. |
[3] | ZHANG Qi, CHEN Dexuan, ZHU Guixiang, ZHANG Shihu, FENG Xiao, MA Chaoqun, ZHANG Yi. Efficacy of Tounongsan decoction (透脓散方) on pyogenic liver abscess: network pharmacology and clinical trial validation [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 145-155. |
[4] | LIU Tingting, LIU Tongou, LIU Mingfu. Effectiveness and safety of acupuncture in treatment of pregnancy-related symptoms: a systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 16-26. |
[5] | REN Ping, WANG Quanwu, BAI Wei, SUN Miao, LIU Zheling, GAO Ming, WANG Liang, PENG Bo, XU Liguang. Identifying the effective combination of acupuncture and traditional Chinese medicinal herbs for postmenopausal osteoporosis therapy through studies of their molecular regulation of bone homeostasis [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 212-219. |
[6] | CHENG Kunming, YUAN Jianan, LIU Jun, ZHANG Shengpeng, XU Qixiang, XIE Yong, ZHAO Jingfeng, ZHANG Xiaoxu, TANG Xudong, ZHENG Yongqiu, WANG Zhong. Identifying Qingkailing (清开灵) ingredients-dependent mesenchymal-epithelial transition factor-axiation “π” structuring module with angiogenesis and neurogenesis effects [J]. Journal of Traditional Chinese Medicine, 2024, 44(1): 35-43. |
[7] | WANG Jiabao, ZHANG Lishuang, NIU Baihan, YU Yajun, YANG Fengwen, MIAO Lin, CHAI Lijuan, DING Xinya, SUN Yingjie, WANG Yujing, WANG Lin, ZHANG Han, WANG Yi, LI Lin. Efficacy and safety of Weichang’ an pill (胃肠安丸) combined with Western Medicine on gastrointestinal diseases: a systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1057-1067. |
[8] | FAN Rong, HE Haoyu, TANG Tao, CUI Hanjin. Long-term effects of Qingfei Paidu decoction (清肺排毒汤) in patients with coronavirus disease 2019 acute pneumonia after treatment: a protocol for systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1068-1071. |
[9] | REN Hui, ZHAO Lintao, GAO Kai, YANG Yuanyuan, CUI Xiaomin, HU Jing, CHEN Zhiyong, LI Ye. Deciphering the chemical profile and pharmacological mechanism of Jinlingzi powder (金铃子散) against bile reflux gastritis using ultra-high performance liquid chromatography coupled with Q exactive focus mass spectrometry, network pharmacology, and molecular docking [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1209-1218. |
[10] | YANG Xirui, ZHAO Hui, SHAN Muhammad, DONG Feixue, ZHANG Dandan, WANG Jixue, YUAN Xingxing. Efficacy of bioactive compounds of Chaihu (Radix Bupleuri Chinensis) on glaucomatous optic atrophy through interleukin-6/hypoxia inducible factor-1α signal pathway [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1219-1226. |
[11] | HAN Huagang, LI Ziqiang, OUYANG Jingfeng, WANG Tianquan, DONG Lingyan, CAO Junling. Mechanism of Lingbao Huxin Dan (灵宝护心丹) in the treatment of bradyarrhythmia complicated with coronary heart disease: a network pharmacology analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 1001-1009. |
[12] | WANG Lili, FENG Ju, ZHAN Daqian, WANG Junshuai, ZHOU Daixing. Protective effects of tanshinone ⅡA on sepsis-induced multiple organ dysfunction: a literature review [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 1040-1046. |
[13] | MEI Pingping, FENG Wenzhe, SHI Peng, ZHANG Wenxiu, ZHUANG Yu. Clinical research progress in Traditional Chinese Medicine in treating wound healing after anal fistula surgery [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 1047-1054. |
[14] | ZHAO HuiYan, JUN Purumea, LEE Chaewon, HAN Chang-Hyun. Acupoint catgut embedding for simple obesity in animal studies: a systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 860-867. |
[15] | SUN Wu, ZHAO Yuwei, LIAO Liang, ZHAO Zhonghui, CHEN Shiqi, YAN Xiaoling, WANG Xueyao, CHAO Guojun, ZHOU Jian. Effectiveness and safety of Xuebijing injection for patients with coronavirus disease 2019: a systematic review and Meta-analysis [J]. Journal of Traditional Chinese Medicine, 2023, 43(4): 631-639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.