Journal of Traditional Chinese Medicine ›› 2025, Vol. 45 ›› Issue (1): 89-99.DOI: 10.19852/j.cnki.jtcm.20240423.002
Previous Articles Next Articles
ZHU Peixuan1, SU Zeqi2, FAN Qiongyin3, ZHANG Cai2(
), WANG Ting2(
)
Received:2023-12-12
Accepted:2024-03-14
Online:2025-02-15
Published:2024-04-23
Contact:
Prof. WANG Ting, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China. Supported by:ZHU Peixuan, SU Zeqi, FAN Qiongyin, ZHANG Cai, WANG Ting. Network pharmacology and animal experiments revealed the protective effects of Guilong prescription (归龙方) on chronic prostatitis and its possible mechanisms[J]. Journal of Traditional Chinese Medicine, 2025, 45(1): 89-99.
Figure 1 Possible mechanisms of GL in the treatment of CP based on network pharmacology A: common targets of compositions and disease; B: KEGG analysis of GL in the treatment of CP. GL: Guilong prescription; CP: chronic prostatitis; KEGG: Kyoto encyclopedia of genes and genomes.
Figure 2 GL alleviated the pathological characteristics of prostate in CP rats induced by carrageenan A: histopathological changes in different groups, HE staining of prostate at × 40 magnification, scale bar = 100 μm. Red circle: interstitial edema, blue circle: interstitial hemorrhage, green circle: interstitial foam-like macrophages and infiltration of interstitial inflammatory cells (mainly lymphocyte). B: general observation of prostate, scale bar = 1 cm. C: Laser speckle pattern of blood perfusion in the prostate. A1, B1, C1: Control group, treated only with animal drinking water. A2, B2, C2: Sham group, the prostate was injected with sterile saline and treated with animal drinking water. A3, B3, C3: CP group, the prostate was injected with carrageenan and treated with animal drinking water. A4, B4, C4: GL low dose (GL-L) group, the prostate was injected with carrageenan and treated with low dose (3.5 g/kg) of GL. A5, B5, C5: GL medium dose (GL-M) group, the prostate was injected with carrageenan and treated with medium dose (7 g/kg) of GL. A6, B6, C6: GL high dose (GL-H) group, the prostate was injected with carrageenan and treated with high dose (14 g/kg) of GL. GL: Guilong prescription; CP: chronic prostatitis; HE: hematoxylin-eosin.
| Group | n | Prostate injury score | Prostate index |
|---|---|---|---|
| Control | 10 | 37.00±10.85 | 1.60±0.23 |
| Sham | 10 | 36.50±13.75 | 1.61±0.23 |
| CP | 10 | 135.50±26.71a | 1.98±0.25a |
| GL-L | 10 | 61.50±24.39b | 1.63±0.23b |
| GL-M | 10 | 45.50±23.39b | 1.66±0.24c |
| GL-H | 10 | 44.50±14.42b | 1.58±0.16b |
Table 1 Statistical results of prostate injury score and prostate index in each group ( x - ?± s)
| Group | n | Prostate injury score | Prostate index |
|---|---|---|---|
| Control | 10 | 37.00±10.85 | 1.60±0.23 |
| Sham | 10 | 36.50±13.75 | 1.61±0.23 |
| CP | 10 | 135.50±26.71a | 1.98±0.25a |
| GL-L | 10 | 61.50±24.39b | 1.63±0.23b |
| GL-M | 10 | 45.50±23.39b | 1.66±0.24c |
| GL-H | 10 | 44.50±14.42b | 1.58±0.16b |
| Group | n | IL-4 | IL-10 | TNF-α | IL-1β | IFN-γ | CXCL1 |
|---|---|---|---|---|---|---|---|
| Control | 8 | 1.55±0.59 | 1.21±0.55 | 0.93±0.49 | 1.33±0.54 | 0.34±0.30 | 4.89±2.90 |
| Sham | 8 | 0.72±0.17 | 0.72±0.22 | 0.70±0.30 | 1.05±0.25 | 0.73±0.61 | 3.64±2.28 |
| CP | 8 | 0.30±0.14a | 0.52±0.12a | 3.71±1.48a | 2.29±0.61a | 2.26±0.83a | 13.45±10.84d |
| GL-L | 8 | 0.75±0.27b | 0.80±0.26c | 1.73±0.80b | 1.14±0.32b | 0.93±0.25b | 4.11±2.46b |
| GL-M | 8 | 0.65±0.34c | 0.82±0.23b | 1.23±0.84b | 0.71±0.38b | 0.85±0.79c | 2.85±2.04b |
| GL-H | 8 | 0.47±0.22 | 0.51±0.21 | 1.90±0.98c | 1.31±0.71c | 1.21±0.86c | 6.39±4.19 |
Table 2 Statistical results of inflammatory cytokine levels in each group (pg/mg, x - ?± s)
| Group | n | IL-4 | IL-10 | TNF-α | IL-1β | IFN-γ | CXCL1 |
|---|---|---|---|---|---|---|---|
| Control | 8 | 1.55±0.59 | 1.21±0.55 | 0.93±0.49 | 1.33±0.54 | 0.34±0.30 | 4.89±2.90 |
| Sham | 8 | 0.72±0.17 | 0.72±0.22 | 0.70±0.30 | 1.05±0.25 | 0.73±0.61 | 3.64±2.28 |
| CP | 8 | 0.30±0.14a | 0.52±0.12a | 3.71±1.48a | 2.29±0.61a | 2.26±0.83a | 13.45±10.84d |
| GL-L | 8 | 0.75±0.27b | 0.80±0.26c | 1.73±0.80b | 1.14±0.32b | 0.93±0.25b | 4.11±2.46b |
| GL-M | 8 | 0.65±0.34c | 0.82±0.23b | 1.23±0.84b | 0.71±0.38b | 0.85±0.79c | 2.85±2.04b |
| GL-H | 8 | 0.47±0.22 | 0.51±0.21 | 1.90±0.98c | 1.31±0.71c | 1.21±0.86c | 6.39±4.19 |
Figure 3 GL down regulated the expression of proteins associated with inflammation in CP rats induced by carrageenan A: immunohistochemical staining of ICAM-1 in the prostate at × 40 magnification, scale bar = 50 μm; B: immunohistochemical staining of iNOS in the prostate at × 40 magnification, scale bar = 50 μm. A1, B1: Control group, treated only with animal drinking water. A2, B2: Sham group, the prostate was injected with sterile saline and treated with animal drinking water. A3, B3: CP group, the prostate was injected with carrageenan and treated with animal drinking water. A4, B4: GL low dose (GL-L) group, the prostate was injected with carrageenan and treated with low dose (3.5 g/kg) of GL. A5, B5: GL medium dose (GL-M) group, the prostate was injected with carrageenan and treated with medium dose (7 g/kg) of GL. A6, B6: GL high dose (GL-H) group, the prostate was injected with carrageenan and treated with high dose (14 g/kg) of GL. GL: Guilong prescription; CP: chronic prostatitis; ICAM-1: intercellular cell adhesion molecule-1; iNOS: induce nitric oxide synthase.
| Group | n | IOD/Area of ICAM-1 | IOD/Area of iNOS |
|---|---|---|---|
| Control | 5 | 0.20±0.02 | 0.18±0.02 |
| Sham | 5 | 0.21±0.02 | 0.21±0.04 |
| CP | 5 | 0.37±0.04a | 0.28±0.03c |
| GL-L | 5 | 0.21±0.03b | 0.21±0.04d |
| GL-M | 5 | 0.27±0.03b | 0.22±0.03d |
| GL-H | 5 | 0.22±0.03b | 0.20±0.03b |
Table 3 Statistical results of ICAM-1 and iNOS expression in each group (pg/mg, x - ?± s)
| Group | n | IOD/Area of ICAM-1 | IOD/Area of iNOS |
|---|---|---|---|
| Control | 5 | 0.20±0.02 | 0.18±0.02 |
| Sham | 5 | 0.21±0.02 | 0.21±0.04 |
| CP | 5 | 0.37±0.04a | 0.28±0.03c |
| GL-L | 5 | 0.21±0.03b | 0.21±0.04d |
| GL-M | 5 | 0.27±0.03b | 0.22±0.03d |
| GL-H | 5 | 0.22±0.03b | 0.20±0.03b |
Figure 4 GL inhibited PI3K-Akt and NF-κB pathway related proteins in the prostate of CP rats induced by carrageenan A: the protein expression levels of PI3K, p-PI3K, Akt, p-Akt, GSK-3β, p-GSK-3β, and β-actin were tested by Western blot. B: The protein expression levels of P38, p-P38, p65, p-p65, IκBα, p-IκBα, and β-actin were tested by Western blot. Control: treated only with animal drinking water. Sham: the prostate was injected with sterile saline and treated with animal drinking water. CP: the prostate was injected with carrageenan and treated with animal drinking water. GL-L: the prostate was injected with carrageenan and treated with low dose (3.5 g/kg) of GL. GL-M: the prostate was injected with carrageenan and treated with medium dose (7 g/kg) of GL. GL-H: the prostate was injected with carrageenan and treated with high dose (14 g/kg) of GL. GL: Guilong prescription; CP: chronic prostatitis; PI3K: phosphatidylinositol 3-kinase; Akt: ribosome-associated complex-alpha serine/threonine-protein kinase; GSK-3β: glycogen synthase kinase-3β; P38: p38 mitogen-activated protein kinase; p65: nuclear factor-κ-gene binding p65; IκBα: inhibitor of NF-κB-α.
| Group | n | PI3K | p-PI3K | Akt | p-Akt | GSK-3β | p-GSK-3β | P38 | p-P38 | p65 | p-p65 | IκBα | p-IκBα |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Control | 6 | 0.54±0.22 | 0.28±0.04 | 0.51±0.08 | 0.24±0.07 | 1.02±0.23 | 0.31±0.04 | 0.59±0.21 | 1.36±0.09 | 0.97±0.18 | 0.22±0.04 | 0.56±0.11 | 0.16±0.04 |
| Sham | 6 | 0.55±0.09 | 0.29±0.07 | 0.55±0.10 | 0.30±0.06 | 1.18±0.22 | 0.35±0.09 | 0.64±0.21 | 1.61±0.09 | 1.08±0.23 | 0.26±0.07 | 0.58±0.21 | 0.25±0.08 |
| CP | 6 | 0.93±0.36a | 0.41±0.05b | 0.57±0.10 | 0.39±0.09b | 1.43±0.31a | 0.40±0.04b | 0.92±0.20a | 1.78±0.12b | 1.39±0.28a | 0.41±0.10b | 0.98±0.38a | 0.55±0.06b |
| GL-L | 6 | 0.64±0.33 | 0.28±0.05c | 0.54±0.11 | 0.37±0.10 | 1.02±0.13d | 0.27±0.07c | 0.62±0.22d | 1.45±0.05c | 0.97±0.23d | 0.20±0.08c | 0.74±0.32 | 0.29±0.05c |
| GL-M | 6 | 0.67±0.28 | 0.35±0.05 | 0.50±0.10 | 0.21±0.07c | 1.03±0.22d | 0.28±0.05c | 0.69±0.13d | 1.43±0.10c | 0.91±0.17c | 0.28±0.09d | 0.59±0.29 | 0.35±0.08c |
| GL-H | 6 | 0.58±0.41 | 0.33±0.06d | 0.47±0.09 | 0.24±0.07c | 1.00±0.16d | 0.38±0.15 | 0.71±0.38 | 1.63±0.08d | 0.99±0.15d | 0.40±0.22 | 0.62±0.24 | 0.46±0.08 |
Table 4 Statistical results of the relative expression levels of PI3K, p-PI3K, Akt, p-Akt, GSK-3β, p-GSK-3β, P38, p-P38, p65, p-p65, IκBα, p-IκBα ( x - ?± s)
| Group | n | PI3K | p-PI3K | Akt | p-Akt | GSK-3β | p-GSK-3β | P38 | p-P38 | p65 | p-p65 | IκBα | p-IκBα |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Control | 6 | 0.54±0.22 | 0.28±0.04 | 0.51±0.08 | 0.24±0.07 | 1.02±0.23 | 0.31±0.04 | 0.59±0.21 | 1.36±0.09 | 0.97±0.18 | 0.22±0.04 | 0.56±0.11 | 0.16±0.04 |
| Sham | 6 | 0.55±0.09 | 0.29±0.07 | 0.55±0.10 | 0.30±0.06 | 1.18±0.22 | 0.35±0.09 | 0.64±0.21 | 1.61±0.09 | 1.08±0.23 | 0.26±0.07 | 0.58±0.21 | 0.25±0.08 |
| CP | 6 | 0.93±0.36a | 0.41±0.05b | 0.57±0.10 | 0.39±0.09b | 1.43±0.31a | 0.40±0.04b | 0.92±0.20a | 1.78±0.12b | 1.39±0.28a | 0.41±0.10b | 0.98±0.38a | 0.55±0.06b |
| GL-L | 6 | 0.64±0.33 | 0.28±0.05c | 0.54±0.11 | 0.37±0.10 | 1.02±0.13d | 0.27±0.07c | 0.62±0.22d | 1.45±0.05c | 0.97±0.23d | 0.20±0.08c | 0.74±0.32 | 0.29±0.05c |
| GL-M | 6 | 0.67±0.28 | 0.35±0.05 | 0.50±0.10 | 0.21±0.07c | 1.03±0.22d | 0.28±0.05c | 0.69±0.13d | 1.43±0.10c | 0.91±0.17c | 0.28±0.09d | 0.59±0.29 | 0.35±0.08c |
| GL-H | 6 | 0.58±0.41 | 0.33±0.06d | 0.47±0.09 | 0.24±0.07c | 1.00±0.16d | 0.38±0.15 | 0.71±0.38 | 1.63±0.08d | 0.99±0.15d | 0.40±0.22 | 0.62±0.24 | 0.46±0.08 |
| 1. | Krieger JN, Nyberg L Jr, Nickel JC. NIH consensus definition and classification of prostatitis. JAMA 1999; 282: 236-7. |
| 2. | Magistro G, Wagenlehner FME, Pilatz A. Chronic prostatitis/chronic pelvic pain syndrome. Urologie 2023; 62: 590-6. |
| 3. |
Suskind AM, Berry SH, Ewing BA, et al. The prevalence and overlap of interstitial cystitis/bladder pain syndrome and chronic prostatitis/chronic pelvic pain syndrome in men: results of the RAND Interstitial Cystitis Epidemiology male study. J Urol 2013; 189: 141-5.
DOI PMID |
| 4. | Pena VN, Engel N, Gabrielson AT, et al. Diagnostic and management strategies for patients with chronic prostatitis and chronic pelvic pain syndrome. Drugs Aging 2021; 38: 845-86. |
| 5. | Zhang J, Liang C, Shang X, Li H. Chronic prostatitis/chronic pelvic pain syndrome: a disease or symptom? current perspectives on diagnosis, treatment, and prognosis. Am J Mens Health 2020; 14: 1557988320903200. |
| 6. | Qin Z, Zhang C, Guo J, et al. Oral pharmacological treatments for chronic prostatitis/chronic pelvic pain syndrome: a systematic review and network Meta-analysis of randomised controlled trials. EClinicalMedicine 2022; 48: 101457. |
| 7. |
Nickel JC. Chronic prostatitis/chronic pelvic pain syndrome: it is time to change our management and research strategy. BJU Int 2020; 125: 479-80.
DOI PMID |
| 8. | Xue Y, Duan Y, Gong X, et al. Traditional Chinese Medicine on treating chronic prostatitis/chronic pelvic pain syndrome: a systematic review and Meta-analysis. Medicine (Baltimore) 2019; 98: e16136. |
| 9. | Franco JV, Turk T, Jung JH, et al. Pharmacological interventions for treating chronic prostatitis/chronic pelvic pain syndrome. Cochrane Database Syst Rev 2019; 10: CD012552. |
| 10. | Zhang ZJ (Eastern Han dynasty). Jin Gui Yao Lüe. Beijing: XueYuan Publishing House, 2007: 116. |
| 11. |
Li H, Hung A, Yang AWH. Herbal formula (Danggui Beimu Kushen Wan) for prostate disorders: a systematic review of classical literature. Integr Med Res 2019; 8: 240-6.
DOI PMID |
| 12. | Li H, Hung A, Yang AWH. A classic herbal formula Danggui Beimu Kushen Wan for chronic prostatitis: from traditional knowledge to scientific exploration. Evid Based Complement Alternat Med 2018; 2018: 1612948. |
| 13. |
Yang X, Yuan L, Chen J, et al. Multitargeted protective effect of Abacopteris penangiana against carrageenan-induced chronic prostatitis in rats. J Ethnopharmacol 2014; 151: 343-51.
DOI PMID |
| 14. |
Hajighorbani M, Ahmadi-Hamedani M, Shahab E, et al. Evaluation of the protective effect of pentoxifylline on carrageenan-induced chronic non-bacterial prostatitis in rats. Inflammopharmacology 2017; 25: 343-50.
DOI PMID |
| 15. | Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm 2016; 7: 27-31. |
| 16. | Zhang C, Wang X, Wang C, et al. Qingwenzhike prescription alleviates acute lung injury induced by LPS via inhibiting TLR4/NF-kB pathway and NLRP 3 inflammasome activation. Front Pharmacol 2021; 12: 790072. |
| 17. | Wu Y, Zhang F, Yang K, et al. SymMap: an integrative database of Traditional Chinese Medicine enhanced by symptom mapping. Nucleic Acids Res 2019; 47: D1110-7. |
| 18. | Stelzer G, Rosen N, Plaschkes I, et al. The Gene Cards Suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54: 1.30. 1-33. |
| 19. |
Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10: 1523.
DOI PMID |
| 20. | He H, Luo H, Xu H, et al. Preclinical models and evaluation criteria of prostatitis. Front Immunol 2023; 14: 1183895. |
| 21. | Epstein JI, Netto GJ. Biopsy interpretation of the prostate. Fifth edition ed.Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2015: 9. |
| 22. |
Cho IR, Keener TS, Nghiem HV, et al. Prostate blood flow characteristics in the chronic prostatitis/pelvic pain syndrome. J Urol 2000; 163: 1130-3.
PMID |
| 23. | Meng LQ, Yang FY, Wang MS, et al. Quercetin protects against chronic prostatitis in rat model through NF-kappa B and MAPK signaling pathways. Prostate 2018; 78: 790-800. |
| 24. |
de Lima NM, Ferreira EO, Fernandes MY, et al. Neuroinflammatory response to experimental stroke is inhibited by boldine. Behav Pharmacol 2017; 28: 223-37.
DOI PMID |
| 25. | Wang HQ, Hu J, Yan HY, et al. Corydaline inhibits enterovirus 71 replication by regulating COX-2 expression. J Asian Nat Prod Res 2017; 19: 1124-33. |
| 26. | Li Y, Zhang L, Zhang P, Hao Z. Dehydrocorydaline protects against sepsis-induced myocardial injury through modulating the TRAF6/NF-κB pathway. Frontiers in Pharmacology 2021; 12: 709604. |
| 27. | Jiang D, Rasul A, Batool R, et al. Potential anticancer properties and mechanisms of action of formononetin. Biomed Res Int 2019; 2019: 5854315. |
| 28. | Chen MH, Gu YY, Zhang AL, et al. Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer. Pharmacol Res 2021; 171: 105778. |
| 29. |
Tarabasz D, Kukula-Koch W. Palmatine: a review of pharmacological properties and pharmacokinetics. Phytother Res 2020; 34: 33-50.
DOI PMID |
| 30. | Yang G, Zeng R, Song X, et al. Sophocarpine alleviates injury-induced intima hyperplasia of carotid arteries by suppressing inflammation in a rat model. J Clin Med 2021; 10: 5449. |
| 31. | Hao Q, Wu Y, Vadgama JV, Wang P. Phytochemicals in inhibition of prostate cancer: evidence from molecular mechanisms studies. Biomolecules 2022; 12: 1306. |
| 32. |
Peng X, Guo H, Chen J, et al. The effect of pirfenidone on rat chronic prostatitis/chronic pelvic pain syndrome and its mechanisms. Prostate 2020; 80: 917-25.
DOI PMID |
| 33. |
Schwartz ES, La JH, Young EE, et al. Chronic prostatitis induces bladder hypersensitivity and sensitizes bladder afferents in the mouse. J Urol 2016; 196: 892-901.
DOI PMID |
| 34. | Chen L, Zhang M, Liang C. Chronic prostatitis and pelvic pain syndrome: another autoimmune disease? Arch Immunol Ther Exp (Warsz) 2021; 69: 24. |
| 35. |
Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol 2014; 26: 253-66.
DOI PMID |
| 36. |
Shidid S, Bluth MH, Smith-Norowitz TA. The role of inflammasomes in mediating urological disease: a short literature review. J Inflamm Res 2022; 15: 4359-65.
DOI PMID |
| 37. |
Motrich RD, Breser ML, Molina RI, et al. Patients with chronic prostatitis/chronic pelvic pain syndrome show T helper type 1 (Th1) and Th17 self-reactive immune responses specific to prostate and seminal antigens and diminished semen quality. BJU Int 2020; 126: 379-87.
DOI PMID |
| 38. |
Hu Q, Lyon CJ, Fletcher JK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses. Acta Pharm Sin B 2021; 11: 1493-512.
DOI PMID |
| 39. | Soundararajan L, Dharmarajan A, Samji P. Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101: 110496. |
| 40. |
Ückert S, Kedia GT, Tsikas D, et al. Emerging drugs to target lower urinary tract symptomatology (LUTS)/benign prostatic hyperplasia (BPH): focus on the prostate. World J Urol 2020; 38: 1423-35.
DOI PMID |
| 41. | Korbecki J, Barczak K, Gutowska I, et al. CXCL1: gene, promoter, regulation of expression, mRNA stability, regulation of activity in the intercellular space. Int J Mol Sci 2022; 23: 792. |
| 42. | Bui TM, Wiesolek HL, Sumagin R. ICAM-1: a master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 2020; 108: 787-99. |
| 43. |
Heeb LEM, Egholm C, Boyman O. Evolution and function of interleukin-4 receptor signaling in adaptive immunity and neutrophils. Genes Immun 2020; 21: 143-9.
DOI PMID |
| 44. | Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217: e20190418. |
| 45. |
Kameritsch P, Renkawitz J. Principles of leukocyte migration strategies. Trends Cell Biol 2020; 30: 818-32.
DOI PMID |
| 46. | Song W, Sun Y, Liang XC, et al. Jinmaitong ameliorates diabetes-induced peripheral neuropathy in rats through Wnt/β-catenin signaling pathway. J Ethnopharmacol 2021; 266: 113461. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.
