Journal of Traditional Chinese Medicine ›› 2023, Vol. 43 ›› Issue (2): 386-396.DOI: 10.19852/j.cnki.jtcm.20220617.005
• Literature Research • Previous Articles Next Articles
Received:
2021-11-11
Accepted:
2022-03-09
Online:
2023-04-15
Published:
2023-03-14
Contact:
GAO Zhen, Department of Integrative Medicine, Huashan hospital of Fudan University, Shanghai 200040, China, gaozhen@fudan.edu.cn. Telephone: +86-21-52888301
Supported by:
WANG Yide, GAO Zhen. Yinyanghuo (Herba Epimedii Brevicornus) and its components for chronic obstructive pulmonary disease: preclinical evidence and possible mechanisms[J]. Journal of Traditional Chinese Medicine, 2023, 43(2): 386-396.
No. | Study | Research type | Gender | Sample size | Model construction method | Intervention | Outcome indicator |
---|---|---|---|---|---|---|---|
1 | Li et al 2013 | In vivo study | Male | 5/5 | CS+LPS | Icariin | HE staining, SOD |
2 | Sun et al 2015 | In vivo study; Vitro study | Male | 10/10 | CS+LPS | Icariin | NO, iNOS, CD8, SOD, CD4/CD8 |
3 | Sun et al 2014 | In vivo study; Vitro study | Male | 10/10 | CS+LPS; LPS | Icariin | TNF-α, MMP-9, TIMP-1, IL-10 |
4 | Xu et al 2013 | Vitro study | / | 6/6 | CSE | Icaritin | ROS, AKT, Nrf2 |
5 | Zeng et al 2010 | In vivo study; Vitro study | Male | 6/6 | CS; CSE | Icariin | IL-8, IL-6, TNF-α, NF-kBp65, IL-10 |
6 | Hu et al 2020 | Vitro study | / | 6/6 | CSE | Icariin | IL-10, IL-8, TNF-α, MMP9, TIMP1,ROS, NF-kBp65 |
7 | Li et al 2014 | In vivo study; Vitro study | Male | 10/10 | CS; CSE | Icariin | TNF-a, IL-8, MMP-9, NF-kBp65 |
8 | Wu et al 2014 | Vitro study | / | 3/3 | CSE | Icariin | ROS, AKT, Nrf2 |
Table 1 Basic characteristics of included literature
No. | Study | Research type | Gender | Sample size | Model construction method | Intervention | Outcome indicator |
---|---|---|---|---|---|---|---|
1 | Li et al 2013 | In vivo study | Male | 5/5 | CS+LPS | Icariin | HE staining, SOD |
2 | Sun et al 2015 | In vivo study; Vitro study | Male | 10/10 | CS+LPS | Icariin | NO, iNOS, CD8, SOD, CD4/CD8 |
3 | Sun et al 2014 | In vivo study; Vitro study | Male | 10/10 | CS+LPS; LPS | Icariin | TNF-α, MMP-9, TIMP-1, IL-10 |
4 | Xu et al 2013 | Vitro study | / | 6/6 | CSE | Icaritin | ROS, AKT, Nrf2 |
5 | Zeng et al 2010 | In vivo study; Vitro study | Male | 6/6 | CS; CSE | Icariin | IL-8, IL-6, TNF-α, NF-kBp65, IL-10 |
6 | Hu et al 2020 | Vitro study | / | 6/6 | CSE | Icariin | IL-10, IL-8, TNF-α, MMP9, TIMP1,ROS, NF-kBp65 |
7 | Li et al 2014 | In vivo study; Vitro study | Male | 10/10 | CS; CSE | Icariin | TNF-a, IL-8, MMP-9, NF-kBp65 |
8 | Wu et al 2014 | Vitro study | / | 3/3 | CSE | Icariin | ROS, AKT, Nrf2 |
No. | Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Li et al 2013 | U | U | U | Y | U | U | U | U | Y | Y |
2 | Sun et al 2015 | U | U | U | Y | U | U | U | Y | Y | Y |
3 | Sun et al 2014 | U | U | U | Y | U | U | U | Y | Y | Y |
4 | Xu et al 2013 | U | U | U | U | U | U | U | U | U | U |
5 | Zeng et al 2010 | U | U | U | Y | U | U | U | Y | Y | Y |
6 | Hu et al 2020 | U | U | U | U | U | U | U | U | U | U |
7 | Li et al 2014 | U | U | U | Y | U | U | U | Y | Y | Y |
8 | Wu et al 2014 | U | U | U | U | U | U | U | U | U | U |
Table 2 Bias risk assessment results of inclusion research
No. | Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Li et al 2013 | U | U | U | Y | U | U | U | U | Y | Y |
2 | Sun et al 2015 | U | U | U | Y | U | U | U | Y | Y | Y |
3 | Sun et al 2014 | U | U | U | Y | U | U | U | Y | Y | Y |
4 | Xu et al 2013 | U | U | U | U | U | U | U | U | U | U |
5 | Zeng et al 2010 | U | U | U | Y | U | U | U | Y | Y | Y |
6 | Hu et al 2020 | U | U | U | U | U | U | U | U | U | U |
7 | Li et al 2014 | U | U | U | Y | U | U | U | Y | Y | Y |
8 | Wu et al 2014 | U | U | U | U | U | U | U | U | U | U |
No. | Outcome indicators | Number of experiments | Heterogeneity test | Effects model | Results of Meta-analysis | |||
---|---|---|---|---|---|---|---|---|
P | I2 (%) | SMD | 95% CI | P value | ||||
1 | SOD | 3 | <0.001 | 88 | Random | 2.45 | (-0.52, 5.42) | 0.110 |
2 | ROS | 2 | 0.020 | 80 | Random | -8.60 | (-16.49, -0.70) | 0.030 |
3 | NO | 2 | 0.007 | 86 | Random | 0.10 | (-1.69, 1.89) | 0.900 |
4 | iNOS | 2 | 0.008 | 86 | Random | -10.18 | (-21.28, 0.92) | 0.070 |
5 | TNF-α | 4 | 0.007 | 75 | Random | -3.95 | (-5.93, -1.97) | <0.001 |
6 | IL-10 | 3 | 0.004 | 82 | Random | 3.49 | (0.76, 6.22) | 0.010 |
7 | IL-8 | 3 | 0.002 | 84 | Random | -12.13 | (-20.53, -3.74) | 0.005 |
8 | MMP-9 | 2 | 0.003 | 80 | Random | -7.01 | (-11.77, -2.25) | 0.005 |
9 | NF-kBp65 | 3 | 0.005 | 81 | Random | -18.93 | (-31.40, -6.46) | 0.003 |
10 | P-AKT | 2 | 0.800 | 0 | Fixed | 6.00 | (3.21, 8.80) | <0.001 |
Table 3 Effect size combination of outcome indicators
No. | Outcome indicators | Number of experiments | Heterogeneity test | Effects model | Results of Meta-analysis | |||
---|---|---|---|---|---|---|---|---|
P | I2 (%) | SMD | 95% CI | P value | ||||
1 | SOD | 3 | <0.001 | 88 | Random | 2.45 | (-0.52, 5.42) | 0.110 |
2 | ROS | 2 | 0.020 | 80 | Random | -8.60 | (-16.49, -0.70) | 0.030 |
3 | NO | 2 | 0.007 | 86 | Random | 0.10 | (-1.69, 1.89) | 0.900 |
4 | iNOS | 2 | 0.008 | 86 | Random | -10.18 | (-21.28, 0.92) | 0.070 |
5 | TNF-α | 4 | 0.007 | 75 | Random | -3.95 | (-5.93, -1.97) | <0.001 |
6 | IL-10 | 3 | 0.004 | 82 | Random | 3.49 | (0.76, 6.22) | 0.010 |
7 | IL-8 | 3 | 0.002 | 84 | Random | -12.13 | (-20.53, -3.74) | 0.005 |
8 | MMP-9 | 2 | 0.003 | 80 | Random | -7.01 | (-11.77, -2.25) | 0.005 |
9 | NF-kBp65 | 3 | 0.005 | 81 | Random | -18.93 | (-31.40, -6.46) | 0.003 |
10 | P-AKT | 2 | 0.800 | 0 | Fixed | 6.00 | (3.21, 8.80) | <0.001 |
TCMSC | Active ingredient | OB% | DL |
---|---|---|---|
MOL001510 | 24-epicampesterol | 37.58 | 0.71 |
MOL001645 | Linoleyl acetate | 42.1 | 0.2 |
MOL001771 | poriferast-5-en-3beta-ol | 36.91 | 0.75 |
MOL001792 | (2S)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one | 32.76 | 0.18 |
MOL003044 | Chryseriol | 35.85 | 0.27 |
MOL003542 | 8-Isopentenyl-kaempferol | 38.04 | 0.39 |
MOL000359 | sitosterol | 36.91 | 0.75 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL004367 | olivil | 62.23 | 0.41 |
MOL004373 | Anhydroicaritin | 45.41 | 0.44 |
MOL004380 | C-Homoerythrinan,1,6-didehydro-3,15,16-trimethoxy-,(3.beta.) | 39.14 | 0.49 |
MOL004382 | Yinyanghuo A | 56.96 | 0.77 |
MOL004384 | Yinyanghuo C | 45.67 | 0.5 |
MOL004386 | Yinyanghuo E | 51.63 | 0.55 |
MOL004388 | 6-hydroxy-11,12-dimethoxy-2,2-dimethyl-1,8-dioxo-2,3,4,8-tetrahydro-1H-isochromeno[3,4-h]isoquinolin-2-ium | 60.64 | 0.66 |
MOL004391 | 8-(3-methylbut-2-enyl)-2-phenyl-chromone | 48.54 | 0.25 |
MOL004394 | Anhydroicaritin-3-O-alpha-L-rhamnoside | 41.58 | 0.61 |
MOL004396 | 1,2-bis(4-hydroxy-3-methoxyphenyl)propan-1,3-diol | 52.31 | 0.22 |
MOL004425 | Icariin | 41.58 | 0.61 |
MOL004427 | Icariside A7 | 31.91 | 0.86 |
MOL000006 | luteolin | 36.16 | 0.25 |
MOL000622 | Magnograndiolide | 63.71 | 0.19 |
MOL000098 | quercetin | 46.43 | 0.28 |
Table 4 Basic information of active components of Yinyanghuo (Herba Epimedii Brevicornus)
TCMSC | Active ingredient | OB% | DL |
---|---|---|---|
MOL001510 | 24-epicampesterol | 37.58 | 0.71 |
MOL001645 | Linoleyl acetate | 42.1 | 0.2 |
MOL001771 | poriferast-5-en-3beta-ol | 36.91 | 0.75 |
MOL001792 | (2S)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one | 32.76 | 0.18 |
MOL003044 | Chryseriol | 35.85 | 0.27 |
MOL003542 | 8-Isopentenyl-kaempferol | 38.04 | 0.39 |
MOL000359 | sitosterol | 36.91 | 0.75 |
MOL000422 | kaempferol | 41.88 | 0.24 |
MOL004367 | olivil | 62.23 | 0.41 |
MOL004373 | Anhydroicaritin | 45.41 | 0.44 |
MOL004380 | C-Homoerythrinan,1,6-didehydro-3,15,16-trimethoxy-,(3.beta.) | 39.14 | 0.49 |
MOL004382 | Yinyanghuo A | 56.96 | 0.77 |
MOL004384 | Yinyanghuo C | 45.67 | 0.5 |
MOL004386 | Yinyanghuo E | 51.63 | 0.55 |
MOL004388 | 6-hydroxy-11,12-dimethoxy-2,2-dimethyl-1,8-dioxo-2,3,4,8-tetrahydro-1H-isochromeno[3,4-h]isoquinolin-2-ium | 60.64 | 0.66 |
MOL004391 | 8-(3-methylbut-2-enyl)-2-phenyl-chromone | 48.54 | 0.25 |
MOL004394 | Anhydroicaritin-3-O-alpha-L-rhamnoside | 41.58 | 0.61 |
MOL004396 | 1,2-bis(4-hydroxy-3-methoxyphenyl)propan-1,3-diol | 52.31 | 0.22 |
MOL004425 | Icariin | 41.58 | 0.61 |
MOL004427 | Icariside A7 | 31.91 | 0.86 |
MOL000006 | luteolin | 36.16 | 0.25 |
MOL000622 | Magnograndiolide | 63.71 | 0.19 |
MOL000098 | quercetin | 46.43 | 0.28 |
Figure 2 Drug-Compound-Target Network of Yinyanghuo (Herba Epimedii Brevicornus) in treating chronic obstructive pulmonary disease COPD: chronic obstructive pulmonary disease.
Figure 3 GO function and KEGG enrichment analysis of related targets A: biological processes; B: molecular functions; C: cellular component; D: KEGG pathways. HTLV-1: human T-lymphotropic virus I; TNF-α: tumor necrosis factor-α; PI3K-Akt: phosphatidylin ositol 3-kinase-protein kinase B; KEGG: kyoto encyclopedia of genes and genomes.
Figure 4 Schematic diagram of composite structure and interaction between active compound and core target A: 24-epicampesterol and MDM2; B: 24-epicampesterol and MAPK8; C: Icariin and EGFR; D: Kaempferol and IL-6; E: poriferast-5-en-3beta-ol and MDM2; F: Quercetin and MAPK8. MDM2: mousedouble minute 2; MAPK8: mitogen-activated protein kinase 8; EGFR: epidermal growth factor receptor; IL-6: interleukin-6.
1. | Singh D, Agusti A, Anzueto A, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease:the GOLD science committee report 2019. Eur Respir J 2019; 53: 1900164. |
2. |
Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda. Respir Med 2020; 171: 106093.
DOI URL |
3. |
Wang C, Xu JY, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet 2018; 391: 1706-17.
DOI PMID |
4. | Gao Z, Jing J, Xu D, Li Z, Li F, Sun Q. A randomized controlled study of the Yi Qi Gu Biao pill in the treatment of frequent exacerbator phenotype in chronic obstructive pulmonary disease (lung and spleen Qi deficiency syndrome). Evid Based Complement Alternat Med 2017; 2017: 9130804. |
5. |
Li FS, Zhang YL, Li Z, et al. Randomized, double-blind, placebo-controlled superiority trial of the Yiqigubiao pill for the treatment of patients with chronic obstructive pulmonary disease at a stable stage. Exp Ther Med 2016; 12: 2477-88.
DOI URL |
6. |
Zu Y, Li D, Lei X, Zhang H. Effects of the chinese herbal formula san-huang gu-ben zhi-ke treatment on stable chronic obstructive pulmonary disease: study protocol of a randomized, double-blind, placebo-controlled trial. Trials 2019; 20: 647.
DOI PMID |
7. | Han ZA, Yang XX, Xue D, et al. Textual research on Epimedium taste. Ji Lin Zhong Yi Yao 2015; 35: 722-6. |
8. | Yuan H, Cao SP, Chen SY, et al. Research progress on chemical constituents and quality control of epimedium. Zhong Cao Yao 2014; 45: 3630-40. |
9. | Li CC, Zhao P, Qin YQ, et al. Research progress on pharmacological activities of icariin. ACTA Chinese Medicine 2020; 35: 781-6. |
10. |
Cheng Y, Yang Z, Shi J, et al. Total flavonoids of Epimedium ameliorates testicular damage in streptozotocin-induced diabetic rats by suppressing inflammation and oxidative stress. Environ Toxicol 2020; 35: 268-76.
DOI PMID |
11. |
Huang S, Meng N, Chang B, Quan X, Yuan R, Li B. Anti-inflammatory activity of epimedium brevicornu maxim ethanol extract. J Med Food 2018; 21: 726-33.
DOI PMID |
12. | Huang C, Li Z, Zhu J, et al. Systems pharmacology dissection of Epimedium targeting tumor microenvironment to enhance cytotoxic T lymphocyte responses in lung cancer. Aging (Albany NY) 2021; 13: 2912-40. |
13. | Liu JQ, Ma Y, Wang XH. Effects of icariin on oxidative stress and expression of NRF2 and HO-1 in lung tissue of chronic asthmatic rats. Zhong Hua Zhong Yi Yao Xue Kan 2019; 37: 2823-6. |
14. | Liu SC. Therapeutic Effect of Rhizoma Anemarrhenae, Herba Epimedii and Ginkgo on chronic bronchitis. Zhong Guo Yao Ye 1996; 3: 38. |
15. |
Zhao YL, Song HR, Fei JX, et al. The effects of Chinese yam-epimedium mixture on respiratory function and quality of life in patients with chronic obstructive pulmonary disease. J Tradit Chin Med 2012; 32: 203-7.
DOI URL |
16. | Zhao Y, Song H, Zhang B. Effect of Chinese herbal medicine of Jianpibushen on nutritional status and humoral immunity in the old patients with stable moderate to severe chronic obstructive pulmonary disease. Xi Bei Guo Fang Yi Xue Za Zhi 2012; 33: 242-4. |
17. | Li L, Li YQ, Sun YJ. Effect of icariin on superoxide dismutase activity in rats with chronic obstructive pulmonary disease. Zhong Guo Lin Chuang Yi Xue 2013; 20: 249-51. |
18. | Sun YJ, Li YQ, Li L. Anti-inflammatory and antioxidant effects of icariin on chronic obstructive pulmonary disease model. Hubei Zhong Yi Yao Da Xue Xue Bao 2015; 4: 4-7. |
19. | Sun YJ. Effect and mechanism of icariin on inflammatory reaction in copd model. Shanghai: Shanghai Jiaotong University, 2014: 1-57. |
20. | Xu HL. Icariin antagonizes oxidative stress in alveolar type ii epithelial cells through PI3K-Akt and Nrf2 pathways. Shanghai: Fudan University, 2013: 1-60. |
21. | Zeng LX. Experimental study on icariin inhibiting inflammation in rats with chronic obstructive pulmonary disease. Shanghai: Fudan University, 2010: 1-126. |
22. |
Hu L, Liu F, LI L, et al. Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 2020; 20: 283-92.
DOI PMID |
23. | Li L, Sun J, Xu C, et al. Icariin ameliorates cigarette smoke induced inflammatory responses via suppression of NF-κB and modulation of GR in vivo and in vitro. PLoS One 2014; 9: 102345. |
24. |
Wu J, Xu H, Wong PF, et al. Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling. Food Chem Toxicol 2014; 64: 307-13.
DOI PMID |
25. | Zhang JH, Li YP, Zhang BL. Evidence-based traditional chinese medicine: theory and practice. Zhong Guo Zhong Yao Za Zhi 2018; 43: 1-7. |
26. | Li PL, Su WW. The latest application progress of network pharmacology in the research of Traditional Chinese Medicine. Zhong Cao Yao 2016; 47: 2938-42. |
27. | Meng FC, Tang LD. Problems and development prospect in network pharmacology research of traditional chinese medicine. Zhong Cao Yao 2020; 51: 2232-7. |
28. |
Hooijmans CR, Rovers MM, De VR, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43.
DOI PMID |
29. |
Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27: 431-2.
DOI PMID |
30. |
Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013; 41: 808-15.
DOI PMID |
31. |
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4: 2.
PMID |
32. |
Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8: 11.
DOI URL |
33. |
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
DOI PMID |
34. |
Kanehisa M, Sato Y, Kawashima M, et al. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 2016; 44: 457-62.
DOI PMID |
35. | Xu FB, Kuang YH, Xie K, et al. Research on molecular mechanism of Anti-COVID-19 using structural similarity and molecular docking. Zhong Guo Zhong Yao Za Zhi 2020; 43: 3089-96. |
36. | Zhang HC, Chan EX. Clinical trial of tiaobufeishen capsules for treating chronic obstructive pulmonary disease at stable stage. Beijing Zhong Yi Yao Da Xue Xue Bao 2003; 26: 53-6. |
37. |
Gao Z, Liu Y, Xu Y, Dong J. Tonifying kidney therapy for stable chronic obstructive pulmonary disease: a systematic review. J Tradit Chin Med 2020; 40: 188-96.
PMID |
38. | Wang D, Jia D, Li ZZ, et al Assseement on safety of epimedium and exploration on risks control measures. Zhong Guo Zhong Yao Za Zhi 2019; 44: 1715-23. |
39. | Brightling C, Greening N. Airway inflammation in COPD: progress to precision medicine. Eur Respir J 2019; 54: 2. |
40. |
Wang Y, Xu J, Meng Y, et al. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis 2018; 13: 3341-8.
DOI URL |
41. |
Malaviya R, Laskin JD, Laskin DL. Anti-TNF-α therapy in inflammatory lung diseases. Pharmacol Ther 2017; 180: 90-8.
DOI URL |
42. |
Silvab SA, Lira FS, Ramos D, et al. Severity of COPD and its relationship with IL-10. Cytokine 2018; 106: 95-100.
DOI PMID |
43. | Wang X, Wong K, Ouyang W, Rutz S. Targeting IL-10 family cytokines for the treatment of human diseases. Cold Spring Harb Perspect Biol 2019; 11: 028548. |
44. | Hudock KM, Collins MS, Imbrogno M, et al. Neutrophil extracellular traps activate IL-8 and IL-1 expression in human bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2020; 319: 137-47. |
45. | Berger KI, Pradhan DR, Goldring RM, Oppenheimer BW, Rom WN, Segal LN. Distal airway dysfunction identifies pulmonary inflammation in asymptomatic smokers. ERJ Open Res 2016; 2: 66. |
46. |
Hudock KM, Collins MS, Imbrogno M, et al. Intranasal curcumin inhibits pulmonary fibrosis by modulating matrix metalloproteinase-9 (mmp-9) in ovalbumin-induced chronic asthma. Inflammation 2017; 40: 248-58.
DOI PMID |
47. | Simpson JL, Mcdonald VM, Baines KJ, et al. Influence of age, past smoking, and disease severity on TLR2, neutrophilic inflammation, and MMP-9 levels in COPD. Mediators Inflamm 2013; 2013: 462934. |
48. |
Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol 2020; 33: 101544.
DOI URL |
49. |
Leelarungrayub J, Puntumetakul R, Sriboonreung T, Pothasak Y, Klaphajone J. Preliminary study: comparative effects of lung volume therapy between slow and fast deep-breathing techniques on pulmonary function, respiratory muscle strength, oxidative stress, cytokines, 6-minute walking distance, and quality of life in persons with COPD. Int J Chron Obstruct Pulmon Dis 2018; 13: 3909-21.
DOI URL |
50. |
Mcguinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med 2017; 6: 21.
DOI URL |
51. |
Khaper N, Bryan S, Dhingra S, et al. Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxid Redox Sign 2010; 13: 1033-49.
DOI PMID |
52. | Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseases. Oxid Med Cell Longev 2019; 2019: 7090534. |
53. |
Schuliga M. NF-kappaB signaling in chronic inflammatory airway disease. Biomolecules 2015; 5: 1266-83.
DOI PMID |
54. | Rossman MJ, Trinity JD, Garten RS, et al. Oral antioxidants improve leg blood flow during exercise in patients with chronic obstructive pulmonary disease. Am J Physiol Heart Circ Physiol 2015; 309: 977-85. |
55. |
Rossman MJ, Groot HJ, Reese V, et al. Oxidative stress and COPD: the effect of oral antioxidants on skeletal muscle fatigue. Med Sci Sports Exerc 2013; 45: 1235-43.
DOI URL |
56. |
Kirkham P, Rahman I. Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 2006; 111: 476-94.
DOI URL |
57. |
Climent M, Viggiani G, Chen YW, et al. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21: 4370.
DOI URL |
58. | Zhuang Y, Wu H, Wang X, et al. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-Mediated Nrf 2 signaling pathway. Oxid Med Cell Longev 2019; 2019: 7591840. |
59. |
Samakova A, Gazova A, Sabova N, et al. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia. Physiol Res 2019; 68: 131-8.
PMID |
60. |
Zhao Q, Li H, Chang L, et al. Qiliqiangxin attenuates oxidative stress-induced mitochondrion-dependent apoptosis in cardiomyocytes via PI3K/AKT/GSK3β signaling pathway. Biol Pharm Bull 2019; 42: 1310-21.
DOI URL |
61. |
Powell HA, Iyen OB, Baldwin DR, Hubbard RB, Tata LJ. Chronic obstructive pulmonary disease and risk of lung cancer: the importance of smoking and timing of diagnosis. J Thorac Oncol 2013; 8: 34-5.
DOI PMID |
62. |
Zeneyedpour L, Dekker LJM, Van SHJ, Burgers PC, Ten HN, Luider TM. Neoantigens in chronic obstructive pulmonary disease and lung cancer: a point of view. Proteomics Clin Appl 2019; 13: 1800093.
DOI URL |
63. |
Wang DC, Shi L, Zhu Z, et al. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 2017; 42: 52-9.
DOI PMID |
64. |
Callejon LB, Pereira VA, Vazquez GE, Sanchez RJL, Gomez AJL, Garcia BT. Study of the metabolomic relationship between lung cancer and chronic obstructive pulmonary disease based on direct infusion mass spectrometry. Biochimie 2019; 157: 111-22.
DOI |
65. | Tang J, Ramis CD, Curull V, et al. Markers of stroma in lung cancer: influence of COPD. Arch Bronconeumol (Engl Ed) 2021; 57: 130-7. |
66. | Ilie M, Hofman V, Long ME, et al. "Sentinel" circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. PLoS One 2014; 9: 111597. |
67. |
Barouchos N, Papazafiropoulou A, Iacovidou N, et al. Comparison of tumor markers and inflammatory biomarkers in chronic obstructive pulmonary disease (COPD) exacerbations. Scand J Clin Lab Invest 2015; 75: 126-32.
DOI URL |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.