Journal of Traditional Chinese Medicine ›› 2024, Vol. 44 ›› Issue (6): 1127-1136.DOI: 10.19852/j.cnki.jtcm.20240927.005
• Research Articles • Previous Articles Next Articles
GAO Changjiu1,3, DING Song3, Shadi A.D. Mohammed3,4, LU Fang2, LIU Changfeng2, TENG Zhan3, XU Peng3, LIU Shumin2()
Received:
2023-09-12
Accepted:
2023-12-05
Online:
2024-12-15
Published:
2024-09-27
Contact:
Prof. LIU Shumin, Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China. keji-liu@163.com Telephone: +86-451-87266827
Supported by:
GAO Changjiu, DING Song, Shadi A.D. Mohammed, LU Fang, LIU Changfeng, TENG Zhan, XU Peng, LIU Shumin. Cardioprotective mechanism of Qixuan Yijianing (芪玄抑甲宁) formula in Graves’ disease mice using miRNA sequencing approach[J]. Journal of Traditional Chinese Medicine, 2024, 44(6): 1127-1136.
Group | n | AST | CK | CK-MB | LDH | α-HBD |
---|---|---|---|---|---|---|
CG | 8 | 272±50 | 902±139 | 346±66 | 733±135 | 231±58 |
MG | 8 | 426±68a | 1315±174a | 577±115a | 1036±196a | 390±82a |
MMI | 8 | 357±53 | 1099±81b | 443±54b | 888±106 | 336±31 |
LD | 8 | 336±63b | 1060±135c | 436±79b | 810±104b | 296±68 |
HD | 8 | 322±74b | 999±172c | 423±89c | 768±146c | 271±79c |
Table 1 Effect of QYN on myocardial enzymes in GD mice (U/L, $\bar{x}±s$)
Group | n | AST | CK | CK-MB | LDH | α-HBD |
---|---|---|---|---|---|---|
CG | 8 | 272±50 | 902±139 | 346±66 | 733±135 | 231±58 |
MG | 8 | 426±68a | 1315±174a | 577±115a | 1036±196a | 390±82a |
MMI | 8 | 357±53 | 1099±81b | 443±54b | 888±106 | 336±31 |
LD | 8 | 336±63b | 1060±135c | 436±79b | 810±104b | 296±68 |
HD | 8 | 322±74b | 999±172c | 423±89c | 768±146c | 271±79c |
Group | n | Heart rate (times/min) | Width of heart (mm) | Length of heart (mm) | HW/BW (mg/g) |
---|---|---|---|---|---|
CG | 8 | 334.10±35.94 | 5.21±0.05 | 7.83±0.27 | 4.10±0.25 |
MG | 8 | 436.90±18.25a | 5.82±0.18a | 8.26±0.26 | 4.89±0.40a |
MMI | 8 | 383.10±26.24b | 5.66±0.16 | 8.16±0.24 | 4.53±0.42 |
LD | 8 | 381.40±26.53b | 5.53±0.15b | 8.03±0.59 | 4.33±0.19c |
HD | 8 | 366.30±45.50c | 5.46±0.24c | 7.90±0.30 | 4.23±0.19c |
Table 2 Effects of QYN on heart rate, heart volume, and heart index in GD mice ($\bar{x}±s$)
Group | n | Heart rate (times/min) | Width of heart (mm) | Length of heart (mm) | HW/BW (mg/g) |
---|---|---|---|---|---|
CG | 8 | 334.10±35.94 | 5.21±0.05 | 7.83±0.27 | 4.10±0.25 |
MG | 8 | 436.90±18.25a | 5.82±0.18a | 8.26±0.26 | 4.89±0.40a |
MMI | 8 | 383.10±26.24b | 5.66±0.16 | 8.16±0.24 | 4.53±0.42 |
LD | 8 | 381.40±26.53b | 5.53±0.15b | 8.03±0.59 | 4.33±0.19c |
HD | 8 | 366.30±45.50c | 5.46±0.24c | 7.90±0.30 | 4.23±0.19c |
Figure 1 Effect of QYN on the morphology of heart tissue in GD mice A: HE staining (hematoxylin-eosin staining), the cross-section of the heart, the cytoplasm is pink, and the nucleus is blue (magnification at × 400; scale bar, 50 μm). A1: CG group; A2: MG group; A3: MMI group; A4: LD group; A5: HD group. B: Masson staining (masson's trichrome stain), heart cross-section, myocardial fibers are red, collagen fibers are blue (magnification at ×400; scale bar, 50 μm). B1: CG group; B2: MG group; B3: MMI group; B4: LD group; B5: HD group; B6: relative proportion of collagen fibers in the hearts of each group (%). For four weeks, the LD and HD groups gavaged Qixuan Yijianing 25, 50 g crude drug·kg-1·d-1, the MMI group gavaged methimazole 3.75 mg·kg-1·d-1, whereas the CG and MG groups gavaged with drinking water 20 mL·kg-1·d-1. CG: control group; MG: model group; MMI: methimazole group; LD: low-dose group; HD: high-dose group. The results are expressed as mean ± standard deviation (n = 3), and the groups were compared using a one-way analysis of variance. P < 0.05 was considered statistically significant. aP < 0.01, vs CG; bP < 0.01, vs MG.
Figure 2 Differential expression of miRNAs and qRT-PCR verification of 5 differentially expressed miRNAs in mice heart tissues A: volcano plot of miRNAs expression between MG and CG; B: compared volcano plot of miRNAs expression in HD and MG; C: histogram of 4 miRNAs differential expression compared between MG and CG; D: histogram of 4 miRNAs differential expression compared between HD and MG (n = 3). For four weeks, the HD groups gavaged Qixuan Yijianing 50 g crude drug·kg-1·d-1, whereas the CG and MG groups gavaged with drinking water 20 mL·kg-1·d-1. miRNA-seq: MicroRNA high-throughput sequencing; qRT-PCR: quantitative real time polymerase chain reaction; CG: control group; MG: model group; HD: high-dose group.
miRNA | MG vs CG | HD vs MG | |||||
---|---|---|---|---|---|---|---|
P value | log2FC | Regulated | P value | log2FC | Regulated | ||
miR-363-3p | 0.006660144 | 2.258448719 | up | 0.037466332 | -0.841642561 | down | |
miR-429-3p | 1.63E-05 | 2.109724791 | up | 0.002446823 | -0.841642561 | down | |
miR-200a-3p | 3.62E-24 | 1.896191583 | up | 2.02E-11 | -1.554896308 | down | |
miR-200b-3p | 3.43E-19 | 1.486466421 | up | 1.27E-17 | -1.615349235 | down | |
miR-122-5p | 2.31E-13 | 1.45085124 | up | 5.07E-07 | -1.136406845 | down | |
miR-499-5p | 8.20E-12 | 0.679754512 | up | 7.98E-05 | 0.611763185 | up | |
miR-431-5p | 0.045290097 | 0.614905119 | up | 0.002417773 | -0.841642561 | down | |
miR-741-3p | 0.003712164 | -1.05012219 | down | 0.031779657 | 0.829569488 | up | |
miR-206-3p | 5.17E-05 | -1.548248689 | down | 0.006381657 | 0.80599753 | up |
Table 3 intersection miRNA information
miRNA | MG vs CG | HD vs MG | |||||
---|---|---|---|---|---|---|---|
P value | log2FC | Regulated | P value | log2FC | Regulated | ||
miR-363-3p | 0.006660144 | 2.258448719 | up | 0.037466332 | -0.841642561 | down | |
miR-429-3p | 1.63E-05 | 2.109724791 | up | 0.002446823 | -0.841642561 | down | |
miR-200a-3p | 3.62E-24 | 1.896191583 | up | 2.02E-11 | -1.554896308 | down | |
miR-200b-3p | 3.43E-19 | 1.486466421 | up | 1.27E-17 | -1.615349235 | down | |
miR-122-5p | 2.31E-13 | 1.45085124 | up | 5.07E-07 | -1.136406845 | down | |
miR-499-5p | 8.20E-12 | 0.679754512 | up | 7.98E-05 | 0.611763185 | up | |
miR-431-5p | 0.045290097 | 0.614905119 | up | 0.002417773 | -0.841642561 | down | |
miR-741-3p | 0.003712164 | -1.05012219 | down | 0.031779657 | 0.829569488 | up | |
miR-206-3p | 5.17E-05 | -1.548248689 | down | 0.006381657 | 0.80599753 | up |
1. | Ehlers M, Schott M, Allelein S. Graves’ disease in clinical perspective. Front Biosci (Landmark Ed) 2019; 24: 35-47. |
2. | Zhang X, Chen L, Sheng J, Li C, He Y, Han W. The association of autoantibodies in hyperthyroid heart disease combined with pulmonary hypertension. Int J Endocrinol 2019; 2019: 9325289. |
3. | El-Harasis MA, DeSimone CV, Stan MN, McLeod CJ, Noseworthy PA. Graves' disease-induced complete heart block and asystole. Heart Rhythm Case Rep 2018; 4: 105-8. |
4. | Wu L, Wang W, Leng Q, et al. Focus on autoimmune myocarditis in graves' disease: a case-based review. Front Cardiovasc Med 2021; 8: 678645. |
5. | Dhital R, Vyas S, Sharma P, Lynn T, Oladiran O, Basnet S. Hyperthyroidism with biventricular heart failure and cirrhotic transformation of the liver. Case Rep Cardiol 2018; 2018: 3861340. |
6. |
Subekti I, Pramono LA. Current diagnosis and management of graves' disease. Acta Med Indones 2018; 50: 177-82.
PMID |
7. |
Barczyński M. Current approach to surgical management of hyperthyroidism. Q J Nucl Med Mol Imaging 2021; 65: 124-31.
DOI PMID |
8. | Kahaly GJ. Management of graves thyroidal and extrathyroidal disease: an update. J Clin Endocrinol Metab 2020; 105: 3704-20. |
9. |
Bartalena L, Piantanida E, Gallo D, Ippolito S, Tanda ML. Management of graves' hyperthyroidism: present and future. Expert Rev Endocrinol Metab 2022; 17: 153-66.
DOI PMID |
10. | Song E, Kim M, Park S, et al. Treatment modality and risk of heart failure in patients with long-standing graves' disease: a nationwide population-based cohort study. Front Endocrinol (Lausanne) 2021; 12: 761782. |
11. | He Q, Dong H, Gong M, et al. New therapeutic horizon of graves' hyperthyroidism: treatment regimens based on immunology and ingredients from Traditional Chinese Medicine. Front Pharmacol 2022; 13: 862831. |
12. | Lin CH, Lin CP, Huang ST. Successful intervention with Chinese herbal medicine for hyperthyroidism: two case reports and a literature review. Explore (NY) 2021; 17: 344-50. |
13. | Xu W, Jiang Y, Wang N, et al. Traditional Chinese medicine as a promising strategy for the treatment of alzheimer’s disease complicated with osteoporosis. Front Pharmacol 2022; 13: 842101. |
14. | Zhang L. Professor Chen Ruquan's academic thoughts and medication rules in the treatment of hyperthyroidism with atrial fibrillation. Wuhan: Hubei University of Chinese Medicine, 2021: 36-8. |
15. | Fang JZ. Study on the effect and mechanism of Fufangjiakang tablet on hyperthyroidism rats with cardiac disease. Wuhan: Hubei University of Chinese Medicine, 2006: 32-6. |
16. | Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' action through miRNA editing. Int J Mol Sci 2019; 20: 6249. |
17. | Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res 2021; 14: 195-212. |
18. | Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39: 1073-84. |
19. | Lock MC, Tellam RL, Botting KJ, et al. The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 2018; 596: 5625-40. |
20. |
Jin L. The therapeutic effect of miRNA-19a/19b on heart failure in mice and the mechanism of myocardial regeneration and repair. Cell Mol Biol (Noisy-le-grand) 2022; 67: 202-9.
DOI PMID |
21. | Li G, Shao Y, Guo HC, et al. MicroRNA-27b-3p down-regulates FGF1 and aggravates pathological cardiac remodelling. Cardiovasc Res 2022; 118: 2139-51. |
22. |
Ye Q, Liu Q, Ma X, et al. MicroRNA-146b-5p promotes atrial fibrosis in atrial fibrillation by repressing TIMP4. J Cell Mol Med 2021; 25: 10543-53.
DOI PMID |
23. | Liu SM, Zhen Z, Wang KX, et al. Pharmacodynamic research of Qixuan Yijianing in the treatment of hyperthyroidism. Zhong Yi Yao Xue Bao 2017; 45: 48-51. |
24. | Liu SM, Zen Z, Li JY, Xu HY, Wang Y, Liu CF. Regulatory effect of Qixuan Yijianing on Th17 cells of rats with hyperthyroidism. Zhong Yao Yao Li Yu Lin Chuang 2017; 33: 144-8. |
25. | Liu SM, Liu CF, Liu XW, Zhang SX. A Traditional Chinese Medicine composition for treating hyperthyroidism and its preparation method and use method. Chinese patent ZL201210460261. 2012 November 15. |
26. | Gao CJ, Ding S, Lu F, Liu CF, Yu DH, Liu SM. Discussion of the mechanism of Qixuan Yijianing in the treatment of graves' disease based on network pharmacology and animal experiments. Zhong Guo Yi Yao Dao Bao 2023; 20: 9-14. |
27. | Li M, Han B, Zhao H, et al. Biological active ingredients of Astragali Radix and its mechanisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine 2022; 98: 153918. |
28. | Zhang X, Qu H, Yang T, Liu Q, Zhou H. Astragaloside IV attenuate MI-induced myocardial fibrosis and cardiac remodeling by inhibiting ROS/caspase-1/GSDMD signaling pathway. Cell Cycle 2022; 21: 2309-22. |
29. |
Wang Q, Chen W, Yang X, et al. Inhibition of miRNA-1-mediated inflammation and autophagy by astragaloside IV improves lipopolysaccharide-induced cardiac dysfunction in rats. J Inflamm Res 2022; 15: 2617-29.
DOI PMID |
30. |
Zhang CC, Gu WL, Wu XM, Li YM, Chen CX, Huang XY. Active components from Radix Scrophulariae inhibits the ventricular remodeling induced by hypertension in rats. Springerplus 2016; 5: 358.
DOI PMID |
31. | Lu F, Yu H, Li ZH, Zhang N, Dong WR, Liu SM. Effects of Scrophulariae Radix and split component on isoproterenol-induced ventricular remodeling in rat. Zhong Yao Cai 2016; 39: 863-6. |
32. |
Gu WL, Chen CX, Huang XY, Gao JP. The effect of angoroside C on pressure overload-induced ventricular remodeling in rats. Phytomedicine 2015; 22: 705-12.
DOI PMID |
33. |
Psotová J, Chlopcíková S, Miketová P, Simánek V. Cytoprotectivity of Prunella vulgaris on doxorubicin-treated rat cardiomyocytes. Fitoterapia 2005; 76: 556-61.
DOI PMID |
34. | Sun XH. Intrervention effects and mechanisms involved of fritillaria thunbergii extract on the H9c2 myocyte hypertrophy induced by isoprenaline. Hangzhou: Zhejiang University of Technology; 2017: 41-6. |
35. |
Nile SH, Su J, Wu D, et al. Fritillaria thunbergii Miq. (Zhe Beimu): a review on its traditional uses, phytochemical profile and pharmacological properties. Food Chem Toxicol 2021; 153: 112289.
DOI PMID |
36. | Wu JR, Guo WX, Zhang XM, Zhang B, Zhang Y. Study on professor Yan Zhenghua's medication regularity in treating heart diseases based on association rules and entropy cluster. Zhong Guo Zhong Yao Za Zhi 2015; 40: 1601-4. |
37. | Liu SM, Zhen Z, Wang KX, et al. Pharmacodynamic research of Qixuan Yijianing on treatment for models of graves disease. Liaoning Zhong Yi Yao Da Xue Xue Bao 2018; 20: 5-7. |
38. | Li PC, Liu T, Wu Y, Zhang Q, Fu CM, Liu C. Optimization of extraction technology from compound Huanghuai based on coagulation activity and central composite design-response surface methodology. Zhong Guo Zhong Yao Za Zhi 2017; 42: 290-7. |
39. |
Eckstein A, Philipp S, Goertz G, Banga JP, Berchner-Pfannschmidt U. Lessons from mouse models of graves' disease. Endocrine 2020; 68: 265-70.
DOI PMID |
40. |
The Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res 2019; 47: D330-8.
DOI |
41. | Zhang D, Wang Q, Qiu X, Chen Y, Yang X, Guan Y. Remifentanil protects heart from myocardial ischaemia/reperfusion (I/R) injury via miR-206-3p/TLR4/NF-κB signalling axis. J Pharm Pharmacol 2022; 74: 282-91. |
42. |
Ge Y, Wang C, Cui B, et al. Isoflurane preconditioning may attenuate cardiomyocyte injury induced by hypoxia/reoxygenation possibly by regulating miR-363-3p. Neurotox Res 2022; 40: 1895-901.
DOI PMID |
43. |
Yang X, Chen G, Chen Z. MicroRNA-200a-3p is a positive regulator in cardiac hypertrophy through directly targeting WDR1 as well as modulating PTEN/PI3K/AKT/CREB/WDR1 signaling. J Cardiovasc Pharmacol 2019; 74: 453-61.
DOI PMID |
44. | Li L, Wang Q, Yuan Z, et al. Long non-coding RNA H19 contributes to hypoxia-induced CPC injury by suppressing Sirt1 through miR-200a-3p. Acta Biochim Biophys Sin (Shanghai) 2018; 50: 950-9. |
45. | Zhang F, Cheng N, Du J, Zhang H, Zhang C. MicroRNA-200b-3p promotes endothelial cell apoptosis by targeting HDAC4 in atherosclerosis. BMC Cardiovasc Disord 2021; 21: 172. |
46. | Shi J, Liu H, Wang H, Kong X. MicroRNA expression signature in degenerative aortic stenosis. Biomed Res Int 2016; 2016: 4682172. |
47. |
Wang H, Chen Y, Tao T, et al. Identification of microRNA biomarkers in serum of patients at different stages of atrial fibrillation. Heart Lung 2020; 49: 902-8.
DOI PMID |
48. | Derumeaux GA, d'Humières T. MicroRNA, miR-122-5p, stiffens the diabetic heart. JACC Cardiovasc Imaging 2021; 14: 1143-5. |
49. | Song W, Zhang T, Yang N, Zhang T, Wen R, Liu C. Inhibition of micro RNA miR-122-5p prevents lipopolysaccharide-induced myocardial injury by inhibiting oxidative stress, inflammation and apoptosis via targeting GIT1. Bioengineered 2021; 12: 1902-15. |
50. | Peng H, Luo Y, Ying Y. LncRNA XIST attenuates hypoxia-induced H9c2 cardiomyocyte injury by targeting the miR-122-5p/FOXP2 axis. Mol Cell Probes 2020; 50: 101500. |
51. |
Song J, Zhang Z, Dong Z, et al. MicroRNA-122-5p aggravates angiotensin II-mediated myocardial fibrosis and dysfunction in hypertensive rats by regulating the elabela/apelin-APJ and ACE2-GDF15-porimin signaling. J Cardiovasc Transl Res 2022; 15: 535-47.
DOI PMID |
52. |
Geng H, Chen L, Su Y, et al. miR-431-5p regulates apoptosis of cardiomyocytes after acute myocardial infarction via targeting selenoprotein T. Physiol Res 2022; 71: 55-62.
DOI PMID |
53. | Xu Z, Sun J, Tong Q, et al. The role of ERK1/ 2 in the development of diabetic cardiomyopathy. Int J Mol Sci 2016; 17: 2001. |
54. | Turner NA, Blythe NM. Cardiac fibroblast p38 MAPK: a critical regulator of myocardial remodeling. J Cardiovasc Dev Dis 2019; 6: 27. |
55. | Romero-Becerra R, Santamans AM, Folgueira C, Sabio G. P38 MAPK pathway in the heart: new insights in health and disease. Int J Mol Sci 2020; 21: 7412. |
56. | Luo Y, Jiang N, May HI, et al. Cooperative binding of ETS2 and NFAT links Erk1/2 and calcineurin signaling in the pathogenesis of cardiac hypertrophy. Circulation 2021; 144: 34-51. |
57. | Ai X, Yan J, Carrillo E, Ding W. The stress-response MAPK inase signaling in cardiac arrhythmias. Rev Physiol Biochem Pharmacol 2016; 172: 77-100. |
58. | Galindo CL, Ryzhov S, Sawyer DB. Neuregulin as a heart failure therapy and mediator of reverse remodeling. Curr Heart Fail Rep 2014; 11: 40-9. |
59. | Vermeulen Z, Hervent AS, Dugaucquier L, et al. Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am J Physiol Heart Circ Physiol 2017; 313: H934-45. |
60. |
Nakagawa A, Naito AT, Sumida T, et al. Activation of endothelial β-catenin signaling induces heart failure. Sci Rep 2016; 6: 25009.
DOI PMID |
61. | Missinato MA, Saydmohammed M, Zuppo DA, et al. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration. Development 2018; 145: 157206. |
62. | Shiraishi M, Yamaguchi A, Suzuki K. Nrg1/ErbB signaling-mediated regulation of fibrosis after myocardial infarction. Faseb J 2022; 36: e22150. |
63. |
Wang J, Liu S, Heallen T, Martin JF. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat Rev Cardiol 2018; 15: 672-84.
DOI PMID |
64. | Xie J, Wang Y, Ai D, Yao L, Jiang H. The role of the Hippo pathway in heart disease. Febs J 2022; 289: 5819-33. |
65. |
Chen X, Li Y, Luo J, Hou N. Molecular mechanism of Hippo-YAP1/TAZ pathway in heart development, disease, and regeneration. Front Physiol 2020; 11: 389.
DOI PMID |
66. | Meng F, Xie B, Martin JF. Targeting the Hippo pathway in heart repair. Cardiovasc Res 2022; 118: 2402-14. |
67. |
Hou N, Wen Y, Yuan X, et al. Activation of Yap1/Taz signaling in ischemic heart disease and dilated cardiomyopathy. Exp Mol Pathol 2017; 103: 267-75.
DOI PMID |
68. |
Mia MM, Singh MK. The Hippo signaling pathway in cardiac development and diseases. Front Cell Dev Biol 2019; 7: 211.
DOI PMID |
69. | Xin Z, Ma Z, Jiang S, et al. FOXOs in the impaired heart: new therapeutic targets for cardiac diseases. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 486-98. |
70. | Samanta J, Mondal A, Saha S, Chakraborty S, Sengupta A. Oleic acid protects from arsenic-induced cardiac hypertrophy via AMPK/FoxO/NFATc3 pathway. Cardiovasc Toxicol 2020; 20: 261-80. |
71. |
Spurthi KM, Sarikhani M, Mishra S, et al. Toll-like receptor 2 deficiency hyperactivates the FoxO1 transcription factor and induces aging-associated cardiac dysfunction in mice. J Biol Chem 2018; 293: 13073-89.
DOI PMID |
72. | Gong Y, Yang J, Liu Q, et al. IGF1 knockdown hinders myocardial development through energy metabolism dysfunction caused by ROS-dependent FOXO activation in the chicken heart. Oxid Med Cell Longev 2019; 2019: 7838754. |
73. |
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19: 783-97.
DOI PMID |
74. | Liu Y, Neogi A, Mani A. The role of Wnt signalling in development of coronary artery disease and its risk factors. Open Biol 2020; 10: 200128. |
75. | Hu HH, Cao G, Wu XQ, Vaziri ND, Zhao YY. Wnt signaling pathway in aging-related tissue fibrosis and therapies. Ageing Res Rev 2020; 60: 101063. |
76. | Lyu X, Li J, Hu Y, et al. Overexpression of miR-27b-3p targeting wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev 2019; 2019: 5703764. |
77. |
Wei F, Ren B, Han W, Guan H, Jing G, Wang M. Investigate the effect of miR-22 on the apoptosis of coronary heart disease cells through the Wnt-1 pathway based on nano-silica-induced rat models. J Nanosci Nanotechnol 2021; 21: 1338-44.
DOI PMID |
78. |
Methatham T, Tomida S, Kimura N, Imai Y, Aizawa K. Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis. Sci Rep 2021; 11: 14886.
DOI PMID |
[1] | LIU Qi, YU Chang, YE Jintong, ZHANG Ling, LI Danyan, DAI Yunkai, ZHANG Yunzhan, LUO Qi, CHEN Weijing, PAN Huaigeng, LI Ruliu, HU Ling. Association of miR-499 rs3746444, miR-149 rs2292832 polymorphisms and their expression levels with helicobacter pylori-related gastric diseases and Traditional Chinese Medicine syndromes [J]. Journal of Traditional Chinese Medicine, 2024, 44(5): 1024-1034. |
[2] | GUO Yuxi, LI Ze, CHENG Nan, JIA Xuemei, WANG Jie, MA Hongyu, ZHAO Runyuan, LI Bolin, XUE Yucong, CAI Yanru, YANG Qian. High-throughput sequencing analysis of differential microRNA expression in the process of blocking the progression of chronic atrophic gastritis to gastric cancer by Xianglian Huazhuo formula (香连化浊方) [J]. Journal of Traditional Chinese Medicine, 2024, 44(4): 703-712. |
[3] | SHEN Jie, YIN Yaoli, LI Hongxiao, LU Ge, ZHU Yaoyao, QIN Yantong, JIN Xun, CHENG Jie, SHEN Meihong. Effect of moxibustion on expression profile of miRNAs in Tripterygium glycoside-induced decreased ovarian reserve [J]. Journal of Traditional Chinese Medicine, 2024, 44(4): 745-752. |
[4] | ZHANG Zeyu, JIA Zhuangzhuang, SONG Yuwei, ZHANG Xuan, WANG Ci, WANG Shuai, ZHANG Peipei, REN Qiuan, WANG Xianliang, MAO Jingyuan. Optimized new Shengmai powder (优化新生脉散方) inhibits myocardial fibrosis in heart failure by regulating the rat sarcoma/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular regulated protein kinases signaling pathway [J]. Journal of Traditional Chinese Medicine, 2024, 44(3): 448-457. |
[5] | WANG Zhibo, LI Ying, WANG Daoping, MA Bo, MIAO Lan, REN Junguo, LIU Jinghua, LIU Jianxun. Proteomics analysis of coronary atherosclerotic heart disease with different Traditional Chinese Medicine syndrome types before and after percutaneous coronary intervention [J]. Journal of Traditional Chinese Medicine, 2024, 44(3): 554-563. |
[6] | TIAN Xinrong, HOU Runsu, LIU Xinguang, ZHAO Peng, TIAN Yange, LI Jiansheng. Yangqing Chenfei formula (养清尘肺方) alleviates crystalline silica induced pulmonary inflammation and fibrosis by suppressing macrophage polarization [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1126-1139. |
[7] | CHEN Yunhu, YIN Moqing, FAN Lihua, JIANG Xuechun, ZHANG Tao, ZHU Xingyu, XU Hongfeng. Mirror-like tongue is an important predictor of acute heart failure: a cohort study of acute heart failure in Chinese patients [J]. Journal of Traditional Chinese Medicine, 2023, 43(6): 1243-1251. |
[8] | DING Luobin, WANG Huajun, LI Yao, LI Jia, LI Ling, GAO Yangping, GUAN Jian, GENG Weiqiang. Electroacupuncture stimulating Neixiyan (EX-LE5) and Dubi (ST35) alleviates osteoarthritis in rats induced by anterior cruciate ligament transaction via affecting DNA methylation regulated transcription of miR-146a and miR-140-5p [J]. Journal of Traditional Chinese Medicine, 2023, 43(5): 983-990. |
[9] | TANG Yanping, LI Peicai, LIU Xi, LIU Lei, GONG Yanxia, WEI Xiaodong, LIU Lina, YANG Li. A single-center retrospective study on epidemiological and Traditional Chinese Medicine syndrome characteristics of 21010 patients with reflux/heartburn symptoms [J]. Journal of Traditional Chinese Medicine, 2023, 43(3): 574-581. |
[10] | WANG Bochuan, ZHANG Yong, ZHANG Qiuyun, ZHANG Zhiqiang, LUO Changyong, WANG Zhendong, BAI Chen, WANG Yuhan, GE Xueyi, QIAN Ying, YU He, GU Xiaohong. Reveal the mechanisms of prescriptions for liver cancer' treatment based on two illustrious senior TCM physicians [J]. Journal of Traditional Chinese Medicine, 2023, 43(1): 188-197. |
[11] | ZHU Lingyan, WEI Yihong, WANG Youhua, YANG Jianmei, LI Jiawei, CAO Min, ZHOU Duan. Protective efficacy of Shenge San (参蛤散) on mitochondria in H9c2 cardiomyocytes [J]. Journal of Traditional Chinese Medicine, 2022, 42(6): 892-899. |
[12] | DING Jiamin, XING Yifeng, CHEN Zuoliang, CHEN Wanlu, MA Zhongxiong, XIE Yunde, ZHOU Lin. Qilan preparation (芪蓝颗粒) inhibits proliferation and induces apoptosis by down-regulating microRNA-21 in human Tca8113 tongue squamous cell carcinoma cells [J]. Journal of Traditional Chinese Medicine, 2022, 42(5): 693-700. |
[13] | ZHANG Jiaying, WEI Xiangxiang, LI Xuefeng, YUAN Yang, DOU Yinghuan, SHI Yanbin, XIE Ping, ZHOU Mengru, ZHAO Junnan, LI Miao, ZHANG Shuwen, ZHU Rui, TIAN Ying, TAN Hao, TIAN Feifei. Shunxin decoction (顺心组方) improves diastolic function in rats with heart failure with preserved ejection fraction induced by abdominal aorta constriction through cyclic guanosine monophosphate-dependent protein kinase Signaling Pathway [J]. Journal of Traditional Chinese Medicine, 2022, 42(5): 764-772. |
[14] | CHEN Yunhu, FAN Lihua, ZHANG Tao, LIU Xueqian. Effectiveness of Zhuling decoction (猪苓汤) on diuretic resistance in patients with heart failure: a randomized, controlled trial [J]. Journal of Traditional Chinese Medicine, 2022, 42(3): 439-445. |
[15] | WANG Wei, LI Qingling, MA Qiang, XIA Ran, GAO Bing, WANG Yi, WANG Jing. Effects of moxibustion at bilateral Feishu (BL13) and Xinshu (BL15) combined with benazepril on myocardial cells apoptosis index and apoptosis-related proteins cytochrome c and apoptosis-inducing factor in rats with chronic heart failure [J]. Journal of Traditional Chinese Medicine, 2022, 42(2): 227-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.