Journal of Traditional Chinese Medicine ›› 2024, Vol. 44 ›› Issue (5): 1006-1016.DOI: 10.19852/j.cnki.jtcm.20240828.005
Previous Articles Next Articles
WU Ruixin1,2, FANG Qingliang3, GUAN Sisi3, WEI Xianglong4, SHAN Mengjun3, MAO Zhujun3, GONG Yabin5, XU Ling5, ZHOU Di5(), DONG Changsheng6()
Received:
2023-07-22
Accepted:
2023-12-05
Online:
2024-10-15
Published:
2024-09-11
Contact:
Prof. DONG Changsheng, Cancer Institute of Traditional Chinese Medicine/Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China. csdong@shutcm.edu.cn;ZHOU Di, Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China. judy_36zzzzz@126.com Telephone: +86-13146342668
Supported by:
WU Ruixin, FANG Qingliang, GUAN Sisi, WEI Xianglong, SHAN Mengjun, MAO Zhujun, GONG Yabin, XU Ling, ZHOU Di, DONG Changsheng. A pilot study of precision treatment for patients with lung cancer pain by Longteng Tongluo recipe (龙藤通络方) using serum genomics[J]. Journal of Traditional Chinese Medicine, 2024, 44(5): 1006-1016.
Figure 1 HPLC-Q-TOF-MS analysis of LTTL A: Chromatograph profile of LTTL and main compounds initially identified from LTTL; B-I: compounds numbered 1-8 are shown in Table 1. B: tetrahydrocolumbamine; C: glaucine; D: protopine; E: quaternary alkaloid; F: tetrahydropalmatine; G: palmatine; H: corydaline; I: dehydrocorydaline. HPLC-Q-TOF-MS: high performance liquid chromatography-quadrupole-time of flight-mass spectrometry; LTTL: Longteng Tongluo recipe.
No. | Compound Name | Retention time (min) | [M+H]+ m/z |
---|---|---|---|
1 | Tetrahydrocolumbamine | 14.78 | 342.04 |
2 | Glaucine | 15.91 | 356.06 |
3 | Protopine | 16.26 | 354.01 |
4 | Quaternary Alkaloid | 16.75 | 338.01 |
5 | Tetrahydropalmatine | 15.81 | 356.12 |
6 | Palmatine | 17.74 | 352.09 |
7 | Corydaline | 16.85 | 370.08 |
8 | Dehydrocorydaline | 19.42 | 366.05 |
Table 1 Main compounds initially identified from Longteng Tongluo recipe
No. | Compound Name | Retention time (min) | [M+H]+ m/z |
---|---|---|---|
1 | Tetrahydrocolumbamine | 14.78 | 342.04 |
2 | Glaucine | 15.91 | 356.06 |
3 | Protopine | 16.26 | 354.01 |
4 | Quaternary Alkaloid | 16.75 | 338.01 |
5 | Tetrahydropalmatine | 15.81 | 356.12 |
6 | Palmatine | 17.74 | 352.09 |
7 | Corydaline | 16.85 | 370.08 |
8 | Dehydrocorydaline | 19.42 | 366.05 |
Characteristic | Control (n =12) | Treatment (n = 12) |
---|---|---|
Sex | ||
Male | 8 (66.67) | 8 (66.67) |
Female | 4 (33.33) | 4 (33.33) |
Age | ||
41-50 | 0 (0.00) | 1 (8.33) |
51-60 | 1 (8.33) | 3 (25.00) |
61-70 | 8 (66.67) | 7 (58.33) |
71-80 | 3 (25.00) | 1 (8.33) |
Nationality | ||
Han nationality | 12 (100.00) | 12 (100.00) |
Other nationality | 0 (0.00) | 0 (0.00) |
Pain degree before treatment | ||
Mild | 5 (41.67) | 5 (41.67) |
Moderate | 6 (50.00) | 5 (41.67) |
Severe | 1 (8.33) | 2 (16.67) |
Pain degree after treatment | ||
Mild | 7 (58.33) | 9 (75.00) |
Moderate | 5 ( (41.67) | 3 (25.00) |
Severe | 0 (0.00) | 0 (0.00) |
Pain medication before treatment | ||
Celebrex | 0 (0.00) | 4 (33.33) |
Tramadol | 1 (8.33) | 2 (16.67) |
Mexantine | 0 (0.00) | 3 (25.00) |
OxyContin | 10 (83.33) | 3 (25.00) |
No medication | 1 (8.33) | 0 (0.00) |
Pain medication after treatment | ||
Celebrex | 0 (0.00) | 3 (25.00) |
Tramadol | 1 (8.33) | 2 (16.67) |
Mexantine | 0 (0.00) | 1 (8.33) |
OxyContin | 11 (91.67) | 6 (50.00) |
No medication | 0 (0.00) | 0 (0.00) |
Table 2 Descriptions of the sample [n (%)]
Characteristic | Control (n =12) | Treatment (n = 12) |
---|---|---|
Sex | ||
Male | 8 (66.67) | 8 (66.67) |
Female | 4 (33.33) | 4 (33.33) |
Age | ||
41-50 | 0 (0.00) | 1 (8.33) |
51-60 | 1 (8.33) | 3 (25.00) |
61-70 | 8 (66.67) | 7 (58.33) |
71-80 | 3 (25.00) | 1 (8.33) |
Nationality | ||
Han nationality | 12 (100.00) | 12 (100.00) |
Other nationality | 0 (0.00) | 0 (0.00) |
Pain degree before treatment | ||
Mild | 5 (41.67) | 5 (41.67) |
Moderate | 6 (50.00) | 5 (41.67) |
Severe | 1 (8.33) | 2 (16.67) |
Pain degree after treatment | ||
Mild | 7 (58.33) | 9 (75.00) |
Moderate | 5 ( (41.67) | 3 (25.00) |
Severe | 0 (0.00) | 0 (0.00) |
Pain medication before treatment | ||
Celebrex | 0 (0.00) | 4 (33.33) |
Tramadol | 1 (8.33) | 2 (16.67) |
Mexantine | 0 (0.00) | 3 (25.00) |
OxyContin | 10 (83.33) | 3 (25.00) |
No medication | 1 (8.33) | 0 (0.00) |
Pain medication after treatment | ||
Celebrex | 0 (0.00) | 3 (25.00) |
Tramadol | 1 (8.33) | 2 (16.67) |
Mexantine | 0 (0.00) | 1 (8.33) |
OxyContin | 11 (91.67) | 6 (50.00) |
No medication | 0 (0.00) | 0 (0.00) |
Group | n | CR+MR+PR | NR | P value |
---|---|---|---|---|
Control | 12 | 4 (33.33) | 8 (66.67) | 0.41 |
Treatment | 12 | 7 (58.33) | 5 (41.67) |
Table 3 Effectiveness of LTTL for external use in treating pain of Lung Cancer [n (%)]
Group | n | CR+MR+PR | NR | P value |
---|---|---|---|---|
Control | 12 | 4 (33.33) | 8 (66.67) | 0.41 |
Treatment | 12 | 7 (58.33) | 5 (41.67) |
Figure 2 Equivalent morphine consumption A: LTTL can reduce the total amount of equivalent morphine usages in patients with lung cancer pain. B: LTTL can reduce the average daily equivalent morphine usages in patients with lung cancer pain. Control (n = 12): treated with three-step medicine + LTTL tincture placebo by external application. Treatment (n = 12): treated with a combination of three-step medication and LTTL tincture via external application. LTTL: Longteng Tongluo recipe. A non-parametric test method, Wilcoxon rank sum test, was chosen for statistical analysis. The data are expressed as mean ± standard deviation. aP<0.01, compared with the Control group.
Figure 3 Cluster analysis heatmap and volcano plot for differentially expressed miRNAs A: cluster analysis heatmap was used to compare the differentially expressed miRNAs between the LTTL group and the control group, where "red" denotes relatively high expression, while "blue" represents comparatively low expression. B: the volcano plot was used to identify miRNAs that were differentially expressed between the control group and the LTTL group. Control: treated with three-step medicine + LTTL tincture placebo by external application. Treatment: treated with a combination of three-step medication and LTTL tincture via external application. LTTL: Longteng Tongluo recipe.
Figure 4 The target genes of 31 differentially expressed miRNAs were subjected to KEGG and GO pathway enrichment analyses A: GO terms for the CC of target genes; B: GO terms for MF of target genes; C: GO terms for the BP of target genes; D: KEGG pathway enrichment analysis. KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology; CC: cellular component; MF: molecular function; BP: cellular component.
1. | Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48. |
2. | Zheng RS, Zhang SW, Sun KX, et al. Cancer statistics in China, 2016. Zhong Hua Zhong Liu Za Zhi 2023; 45: 212-20. |
3. |
He YH, Guo XF, Brian HM, et al. Clinical evidence for Association of acupuncture and acupressure with improved cancer pain: a systematic review and Meta-analysis. JAMA Oncol 2020; 6: 271-8.
DOI PMID |
4. | Van D, Rijke JD, Kessels A, et al. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 2007; 18: 1437-49. |
5. | Bollen L, Wibmer C, Van der Linden YM, et al. Predictive value of six prognostic scoring systems for spinal bone metastases, an analysis based on 1379 patinets. Spine 2016; 41: 155-62. |
6. |
Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 2006; 12: 6243s-49s.
PMID |
7. | Nielsen OS, Munro AJ, Tannock IF. Bone metastases: pathophysiology and management policy. J Clin Oncol 1991; 509-24. |
8. |
Honore P, Luger NM, Sabino MAC, et al. Osteoprotegerin blocks bone cancer-induced skeletal destruction. skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 2000; 6: 521-8.
DOI PMID |
9. | Scarborough BM, Smith CB. Optimal pain management for patients with cancer in the modern era. CA Cancer J Clin 2018; 68: 182-96. |
10. |
Pachman DR, Barton DL, Swetz KM, Loprinzi CL. Troublesome symptoms in cancer survivors: fatigue, insomnia, neuropathy, and pain. J Clin Oncol 2012; 30: 3687-96.
DOI PMID |
11. | Swarm RA, Paice JA, Anghelescu DL, et al. Adult cancer pain, Version 3.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 2019; 17: 977-1007. |
12. | National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology (NCCN guidelines), adult cancer pain. online, 2018-1-22, published, 2018-6-10, version 1. Available from URL: https://www.nccn.org/professionals/default.aspx. |
13. |
Deng G. Integrative medicine therapies for pain management in cancer patients. Cancer J 2019; 25: 343-8.
DOI PMID |
14. | Johns JR, Williams G, Pazdur R. End points and united states food and drug administration approval of oncology drugs. J Clin Oncol 2003; 21: 1401-11. |
15. |
Lee J, Yoon SW. Efficacy and safety of moxibustion for relieving pain in patients with metastatic cancer: a pilot, randomized, single-blind, sham-controlled trial. Integr Cancer Ther 2014; 13: 211-16.
DOI PMID |
16. | Wang YH, Chang JY, Feng L. Effect of oral Chinese medicine combined with Western Medicine on cancer pain: a Meta-analysis. Integr Cancer Ther 2021; 27: 713-20. |
17. |
Wang JY, Zhang RX, Dong CS, et al. Transient receptor potential channel and interleukin-17A involvement in LTTL gel inhibition of bone cancer pain in a rat model. Integr Cancer Ther 2015; 14: 381-93.
DOI PMID |
18. | Wang JY, Zhang RX, Dong CS, et al. Topic treatment of Tong-Luo-San-Jie gel alleviates bone cancer pain in rats. J Ethnopharmacol 2012; 143: 905-13. |
19. | Liu CY. Chinese Herbal Medicine:Modern applications of traditional formulas. Carabas. Florida: Chemical & Rubber & Company Press, 2004: 16. |
20. |
Ilfeld BM, Plunkett A, Vijjeswarapu AM, et al. Percutaneous peripheral nerve stimulation (neuromodulation) for postoperative pain: a randomized, sham-controlled pilot study. Anesthesiology 2021; 135: 95-110.
DOI PMID |
21. |
Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: 25-34.
DOI PMID |
22. | Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29: 2933-5. |
23. |
Friedländer MR, Chen W, Adamidi C, et al. Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008; 26: 407-15.
DOI PMID |
24. |
Wang K, Liang C, Liu J, et al. Prediction of piRNAs using transposon interaction and a support vector machine. BMC Bioinformatics 2014; 15: 419.
DOI PMID |
25. |
Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34: W451-4.
DOI PMID |
26. |
John B, Sander C, Marks DS. Prediction of human microRNA targets. Methods Mol Biol 2006; 342: 101-13.
PMID |
27. | Agarwal V, Bell GW, Nam J, et al. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015; 4: e05005. |
28. |
Kivioja T, Vähärautio A, Karlsson K, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 2011; 9: 72-4.
DOI PMID |
29. |
Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010; 26: 136-8.
DOI PMID |
30. | Sheu MJ, Chou PY, Cheng HC, et al. Analgesic and anti-inflammatory activities of a water extract of trachelospermum jasminoides (apocynaceae). J Ethnopharmacol 2009; 126: 332-8. |
31. | Luo Y, Wang CZ, Sawadogo R, et al. Effects of herbal medicines on pain management. Am J Chin Med 2020; 48: 1-16. |
32. | Yuan CS, Mehendale SR, Wang CZ, et al. Effects of corydalis Yanhusuo and angelicae dahuricae on cold pressor-induced pain in humans: a controlled trial. J Clin Pharmacol 2004; 44: 1323-27. |
33. | Fan AY, Lao LX, Zhang RX, et al. Effects of an acetone extract of Boswellia Carterii Birdw (Burseraceae) gum resin on rats with persistent inflammation. J Altern Complement Med 2005; 11: 323-31. |
34. |
Su S, Hua Y, Wang Y, et al. Evaluation of the anti-inflammatory and analgesic properties of individual and combined extracts from Commiphora Myrrha, and Boswellia Carterii. J Ethnopharmacol 2012; 139: 649-56.
DOI PMID |
35. |
Xie F, Zhang M, Zhang CF, et al. Anti-inflammatory and analgesic activities of ethanolic extract and two limonoids from melia toosendan fruit. J Ethnopharmacol 2008; 117: 463-6.
DOI PMID |
36. |
Zhang Y, Wang C, Wang L, et al. A novel analgesic isolated from a Traditional Chinese Medicine. Curr Biol 2014; 24: 117-23.
DOI PMID |
37. | Ajit SK. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors (Basel) 2012; 12: 3359-69. |
38. |
Aguado Fraile E, Ramos E, Conde E, et al. MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrologia 2013; 33: 826-34.
DOI PMID |
39. | Chen YH, Heneidi S, Lee JM, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 2013; 62: 2278-86. |
40. |
Elramah S, López González MJ, Bastide M, et al. Spinal miRNA-124 regulates synaptopodin and nociception in an animal model of bone cancer pain. Sci Rep 2017; 7: 10949.
DOI PMID |
41. | Dai Z, Chu H, Ma J, et al. The regulatory mechanisms and therapeutic potential of nicroRNAs: from chronic pain to morphine tolerance. Front Mol Neurosci 2018; 11: 80. |
42. | Hou XR, Weng Y, Guo Q, et al. Transcriptomic analysis of long noncoding RNAs and mRNAs expression profiles in the spinal cord of bone cancer pain rats. Mol Brain 2020; 13: 47. |
43. |
Bali KK, Selvaraj D, Satagopam VP, et al. Genome-wide identification and functional analyses of microRNA signatures associated with cancer pain. EMBO Mol Med 2013; 5: 1740-58.
DOI PMID |
44. |
Elramah S, López-González MJ, Bastide M, et al. Spinal miRNA-124 regulates synaptopodin and nociception in an animal model of bone cancer pain. Sci Rep 2017; 7: 10949.
DOI PMID |
45. | Wang W, Xu X, Tian B, et al. The diagnostic value of serum tumor markers CEA, CA19- 9, CA125, CA15-3, and TPS in metastatic breast cancer. Clin Chim Acta 2017; 470: 51-5. |
46. | Deng GC, Yan H, Guo ZP, et al. Correlation between baseline serum tumor markers and clinical characteristic factors in patients with advanced pancreatic cancer. Onco Targets Ther 2020; 13: 11151-63. |
47. | Wang J, Chu Y, Li J, et al. Development of a prediction model with serum tumor markers to assess tumor metastasis in lung cancer. Cancer Med 2020; 9: 5436-45. |
48. | Shi WQ, Liu WF, Li B, et al. Assessment of serum tumor markers for predicting ocular metastasis in lung adenocarcinoma: a retrospective study. Dis Markers 2020; 2020: 2102158. |
49. |
Backes C, Meese E, Keller A. Specific miRNA disease biomarkers in blood, serum and plasma: challenges and prospects. Mol Diagn Ther 2016; 20: 509-18.
PMID |
50. | Dong CS, Wu RX. Discussion on the pathogenesis of tumor "Zheng-Xu-Xie-Shi Syndrome" and its treatment based on metabolism. Zhejiang Zhong Yi Za Zhi 2023; 58: 175-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.