Journal of Traditional Chinese Medicine ›› 2022, Vol. 42 ›› Issue (2): 176-186.DOI: 10.19852/j.cnki.jtcm.20220311.002

• Research Articles • Previous Articles     Next Articles

Protective effect of resveratrol on rat cardiomyocyte H9C2 cells injured by hypoxia/reoxygenation by regulating mitochondrial autophagy via PTEN-induced putative kinase protein 1/Parkinson disease protein 2 signaling pathway

ZHAO Lixia1,2, SUN Wei3, BAI Decheng1()   

  1. 1 Institute of Integrated Traditional Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
    2 School of Nursing, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou 730000, China
    3 Cardiac Surgery, the First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
  • Received:2021-09-12 Accepted:2021-12-29 Online:2022-04-15 Published:2022-03-11
  • Contact: BAI Decheng
  • About author:Prof. BAI Decheng, Lanzhou university, Lanzhou 730000, Gansu, China. bdc8637@163.com, Telephone: +86-13088758222
  • Supported by:
    Open Fund of Key Laboratory of Dunhuang Medicine, Ministry of Education(DHYX20-09);Youth Research Foundation of the Gansu University of Chinese Medicine(ZQ2017-14)

Abstract:

OBJECTIVE: To investigate the protective effect of resveratrol on cardiomyocytes after hypoxia/ reoxygenation intervention based on PTEN-induced putative kinase protein 1/Parkinson disease protein 2 (PINK1/PARKIN) signaling pathway.

METHODS: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenylte-trazolium bromide was used to detect the effect of resveratrol on the viability of H9C2 cells; the hypoxia/ reoxygenation (H/R) model was established in tri-gas incubator; 2’, 7’-Dichlorofluorescin diacetate staining was used to measure the content of reactive oxygen species (ROS); the changes of mitochondrial membrane potential was determined by 5,5’,6,6’-Tetrachloro-1,1’,3,3’-tetraethyl-imidacarbocyanine iodide staining; the changes of mitochondrial respiratory chain complex activity was evaluated by enzyme activity kits; flow cytometry was used to detect the ratio of apoptotic cells; transmission electron microscope was used to observe the ultrastructure of H9C2 cells; Western blot was used to detect the protein changes of mitochondrial 20 kDa outer membrane protein (TOM20), translocase of inner mitochondrial membrane 23 (TIM23), presenilins associated rhomboid-like protein (PARL), PINK1, PARKIN and mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), phosphotyrosine independent ligand for the Lck SH2 domain of 62 kDa (P62), microtubule-associated protein 1 light chain 3 beta (LC3B); the mRNA levels of PINK1 and PARKIN was detected by quantitative polymerase chain reaction; immunoprecipitation assay was used to detect the interaction between PARKIN and Ubiquitin.

RESULTS: Resveratrol could inhibit the proliferation of H9C2 cells in a time- and concentration- dependent manner; however, pretreatment with low cytotoxic resveratrol could reduce the H/R-induced increase in cellular ROS levels, alleviate the loss of mitochondrial membrane potential induced by H/R, inhibit H/R-induced apoptosis of H9C2 cells, and protect the mitochondrial structure and respiratory chain of H9C2 cells from H/R damage. Resveratrol could further increase the levels of p62, PINK1, PARKIN protein, the expression of PINK1, PARKIN mRNA and the ratio of LC3BⅡ/LC3BⅠin H/R-induced H9C2 cells, inhibit the interaction between PARKIN and Ubiquitin in H/R-induced H9C2 cells, and further reduce the expression of TOM20,TIM23, PARL, Mfn1 and Mfn2 protein in H/R-induced H9C2 cells. The effect of resveratrol is consistent with that of autophagy activator on H/R-induced H9C2 cells.

CONCLUSIONS: Resveratrol can protect H9C2 cells from H/R injury, which may be related to resveratrol promoting mitochondrial autophagy by activating PINK1/PARKIN signaling pathway.

Key words: resveratrol, myocytes, cardiac, hypoxia, PTEN phosphohydrolase, Parkinson disease associated proteins, mitochondrial autophagy

Cite this article

ZHAO Lixia, SUN Wei, BAI Decheng. Protective effect of resveratrol on rat cardiomyocyte H9C2 cells injured by hypoxia/reoxygenation by regulating mitochondrial autophagy via PTEN-induced putative kinase protein 1/Parkinson disease protein 2 signaling pathway[J]. Journal of Traditional Chinese Medicine, 2022, 42(2): 176-186.