Journal of Traditional Chinese Medicine ›› 2025, Vol. 45 ›› Issue (1): 192-200.DOI: 10.19852/j.cnki.jtcm.2025.01.019
Previous Articles Next Articles
CHE Qianzi1, LIU Dasheng2, XIANG Xinghua1, TIAN Yaxin1, XIE Feibiao1, XU Wenyuan1, LIU Jian4, WANG Xuejie3, WANG Liying3, BAI Weiguo1, HAN Xuejie3(
), YANG Wei1(
)
Received:2024-01-22
Accepted:2024-04-15
Online:2025-02-15
Published:2025-01-10
Contact:
Prof. HAN Xuejie, Traditional Chinese Medicine Standards Research Center, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China. Supported by:CHE Qianzi, LIU Dasheng, XIANG Xinghua, TIAN Yaxin, XIE Feibiao, XU Wenyuan, LIU Jian, WANG Xuejie, WANG Liying, BAI Weiguo, HAN Xuejie, YANG Wei. Integrating machine learning and human use experience to identify personalized pharmacotherapy in Traditional Chinese Medicine: a case study on resistant hypertension[J]. Journal of Traditional Chinese Medicine, 2025, 45(1): 192-200.
| Characteristic | MACE (n = 1286) | No MACE (n = 152) | Total (n = 1438) | P value | |
|---|---|---|---|---|---|
| Age (years) | 72.9±12.3 | 61.3±14.5 | 71.6±13.0 | <0.001 | |
| ≤60 years old [n (%)] | 192 (14.9) | 69 (45.4) | 261 (18.2) | <0.001 | |
| > 60 years old [n (%)] | 1094 (85.1) | 83 (54.6) | 1177 (81.8) | ||
| Male [n (%)] | 641 (49.8) | 63 (41.4) | 704 (49.0) | 0.050 | |
| BMI (kg/m2) | 27.0±5.2 | 26.5±9.3 | 27.0±5.2 | 0.853 | |
| Temperature (℃) | 36.5±0.5 | 36.4±0.4 | 36.5±0.5 | 0.072 | |
| Heart rate (bpm) | 81.0±16.7 | 78.2±13.1 | 80.7±16.3 | 0.120 | |
| SBP (mm Hg) | 143.3±22.8 | 149.3±28.6 | 144.0±23.6 | 0.030 | |
| DBP (mm Hg) | 79.7±14.9 | 88.4±18.5 | 80.6±15.6 | <0.001 | |
| Smoking history [n (%)] | 326 (25.4) | 27 (17.8) | 353 (24.6) | 0.038 | |
| Smoking duration | 33.37 (14.7) | 24.00 (11.2) | 32.63 (14.7) | 0.007 | |
| Comorbidities [n (%)] | Hypertension | 1094 (85.3) | 93 (61.2) | 1187 (82.7) | <0.001 |
| Hypertension class Ⅲ | 773 (60.1) | 69 (45.4) | 842 (58.6) | <0.001 | |
| Hyperlipidemia | 313 (24.4) | 30 (19.7) | 343 (23.9) | 0.203 | |
| Diabetes | 510 (39.8) | 35 (23.0) | 545 (38.0) | <0.001 | |
| Arrhythmia | 193 (15.0) | 6 (3.9) | 199 (13.9) | <0.001 | |
| Cerebral infarction | 321 (25.0) | 1 (0.7) | 322 (22.4) | <0.001 | |
| Kidney dysfunction | 114 (8.9) | 0 (0.0) | 114 (7.9) | <0.001 | |
| Atherosclerotic | 115 (9.0) | 6 (3.9) | 121 (8.4) | 0.035 | |
| Symptoms [n (%)] | Asthmatoid dyspnea | 326 (25.3) | 6 (3.9) | 332 (23.1) | <0.001 |
| Chest congestion | 612 (47.6) | 31 (20.4) | 643 (44.7) | <0.001 | |
| Poor sleep | 578 (44.9) | 55 (36.2) | 633 (44.0) | 0.040 | |
| Pale complexion | 581 (45.2) | 35 (23.0) | 616 (42.8) | <0.001 | |
| Empty eyes | 589 (45.8) | 33 (21.7) | 622 (43.3) | <0.001 | |
| Fatigue | 537 (41.8) | 39 (25.7) | 576 (40.1) | <0.001 | |
| Poor appetite | 501 (39.0) | 34 (22.4) | 535 (37.2) | <0.001 | |
| Legs edema | 506 (39.3) | 32 (21.1) | 538 (37.4) | <0.001 | |
| Constipation | 350 (27.2) | 8 (5.3) | 358 (24.9) | <0.001 | |
| Out of condition | 487 (37.9) | 24 (15.8) | 511 (35.5) | <0.001 | |
| Tongue body [n (%)] | Tooth-marked tongue | 41 (3.2) | 4 (2.6) | 45 (3.1) | 0.709 |
| Old tongue | 514 (40.0) | 45 (29.6) | 559 (38.9) | 0.013 | |
| Fissured tongue | 39 (3.0) | 3 (2.0) | 42 (2.9) | 0.463 | |
| Fat tongue | 3 (2.0) | 81 (6.3) | 84 (5.8) | 0.032 | |
| Tongue proper [n (%)] | Dark | 138 (10.7) | 16 (10.5) | 154 (10.7) | 0.939 |
| Dark red | 380 (29.5) | 40 (26.3) | 420 (29.2) | 0.407 | |
| Pink | 75 (5.8) | 10 (6.6) | 85 (5.9) | 0.712 | |
| Pink and dark | 146 (11.4) | 11 (7.2) | 157 (10.9) | 0.124 | |
| Pink and red | 278 (21.6) | 40 (26.3) | 318 (22.1) | 0.187 | |
| Red | 208 (16.2) | 33 (21.7) | 241 (16.8) | 0.084 | |
| Tongue coating [n (%)] | White fur | 458 (50.2) | 61 (57.5) | 519 (51.0) | 0.273 |
| Yellow fur | 431 (47.3) | 43 (40.6) | 474 (46.6) | 0.195 | |
| Few coating | 87 (6.8) | 5 (3.3) | 92 (6.4) | 0.098 | |
| Moist fur | 1223 (95.1) | 150 (98.7) | 1373 (95.5) | 0.044 | |
| Dry fur | 57 (4.4) | 2 (1.3) | 59 (4.1) | 0.067 | |
| Thin fur | 409 (31.8) | 59 (38.8) | 468 (32.5) | 0.081 | |
| Greasy fur | 638 (49.6) | 61 (40.1) | 699 (48.6) | 0.027 | |
| Pulse conditions [(n (%)] | Deep | 293 (22.8) | 27 (17.8) | 320 (22.3) | 0.159 |
| Intermittent | 64 (5) | 0 (0) | 64 (4.5) | 0.005 | |
| Slippery | 485 (37.7) | 60 (39.5) | 545 (37.9) | 0.672 | |
| Relaxed | 40 (3.1) | 0 (0) | 40 (2.8) | 0.027 | |
| Weak | 67 (5.2) | 3 (2) | 70 (4.9) | 0.080 | |
| Rapid | 140 (10.9) | 13 (8.6) | 153 (10.6) | 0.378 | |
| Thready | 333 (25.9) | 39 (25.7) | 372 (25.9) | 0.950 | |
| Wiry | 616 (47.9) | 93 (61.2) | 709 (49.3) | 0.002 | |
Table 1 Statistical summary of demographic and clinical features from the MACE group and no MACE group ($\bar{x}±s$)
| Characteristic | MACE (n = 1286) | No MACE (n = 152) | Total (n = 1438) | P value | |
|---|---|---|---|---|---|
| Age (years) | 72.9±12.3 | 61.3±14.5 | 71.6±13.0 | <0.001 | |
| ≤60 years old [n (%)] | 192 (14.9) | 69 (45.4) | 261 (18.2) | <0.001 | |
| > 60 years old [n (%)] | 1094 (85.1) | 83 (54.6) | 1177 (81.8) | ||
| Male [n (%)] | 641 (49.8) | 63 (41.4) | 704 (49.0) | 0.050 | |
| BMI (kg/m2) | 27.0±5.2 | 26.5±9.3 | 27.0±5.2 | 0.853 | |
| Temperature (℃) | 36.5±0.5 | 36.4±0.4 | 36.5±0.5 | 0.072 | |
| Heart rate (bpm) | 81.0±16.7 | 78.2±13.1 | 80.7±16.3 | 0.120 | |
| SBP (mm Hg) | 143.3±22.8 | 149.3±28.6 | 144.0±23.6 | 0.030 | |
| DBP (mm Hg) | 79.7±14.9 | 88.4±18.5 | 80.6±15.6 | <0.001 | |
| Smoking history [n (%)] | 326 (25.4) | 27 (17.8) | 353 (24.6) | 0.038 | |
| Smoking duration | 33.37 (14.7) | 24.00 (11.2) | 32.63 (14.7) | 0.007 | |
| Comorbidities [n (%)] | Hypertension | 1094 (85.3) | 93 (61.2) | 1187 (82.7) | <0.001 |
| Hypertension class Ⅲ | 773 (60.1) | 69 (45.4) | 842 (58.6) | <0.001 | |
| Hyperlipidemia | 313 (24.4) | 30 (19.7) | 343 (23.9) | 0.203 | |
| Diabetes | 510 (39.8) | 35 (23.0) | 545 (38.0) | <0.001 | |
| Arrhythmia | 193 (15.0) | 6 (3.9) | 199 (13.9) | <0.001 | |
| Cerebral infarction | 321 (25.0) | 1 (0.7) | 322 (22.4) | <0.001 | |
| Kidney dysfunction | 114 (8.9) | 0 (0.0) | 114 (7.9) | <0.001 | |
| Atherosclerotic | 115 (9.0) | 6 (3.9) | 121 (8.4) | 0.035 | |
| Symptoms [n (%)] | Asthmatoid dyspnea | 326 (25.3) | 6 (3.9) | 332 (23.1) | <0.001 |
| Chest congestion | 612 (47.6) | 31 (20.4) | 643 (44.7) | <0.001 | |
| Poor sleep | 578 (44.9) | 55 (36.2) | 633 (44.0) | 0.040 | |
| Pale complexion | 581 (45.2) | 35 (23.0) | 616 (42.8) | <0.001 | |
| Empty eyes | 589 (45.8) | 33 (21.7) | 622 (43.3) | <0.001 | |
| Fatigue | 537 (41.8) | 39 (25.7) | 576 (40.1) | <0.001 | |
| Poor appetite | 501 (39.0) | 34 (22.4) | 535 (37.2) | <0.001 | |
| Legs edema | 506 (39.3) | 32 (21.1) | 538 (37.4) | <0.001 | |
| Constipation | 350 (27.2) | 8 (5.3) | 358 (24.9) | <0.001 | |
| Out of condition | 487 (37.9) | 24 (15.8) | 511 (35.5) | <0.001 | |
| Tongue body [n (%)] | Tooth-marked tongue | 41 (3.2) | 4 (2.6) | 45 (3.1) | 0.709 |
| Old tongue | 514 (40.0) | 45 (29.6) | 559 (38.9) | 0.013 | |
| Fissured tongue | 39 (3.0) | 3 (2.0) | 42 (2.9) | 0.463 | |
| Fat tongue | 3 (2.0) | 81 (6.3) | 84 (5.8) | 0.032 | |
| Tongue proper [n (%)] | Dark | 138 (10.7) | 16 (10.5) | 154 (10.7) | 0.939 |
| Dark red | 380 (29.5) | 40 (26.3) | 420 (29.2) | 0.407 | |
| Pink | 75 (5.8) | 10 (6.6) | 85 (5.9) | 0.712 | |
| Pink and dark | 146 (11.4) | 11 (7.2) | 157 (10.9) | 0.124 | |
| Pink and red | 278 (21.6) | 40 (26.3) | 318 (22.1) | 0.187 | |
| Red | 208 (16.2) | 33 (21.7) | 241 (16.8) | 0.084 | |
| Tongue coating [n (%)] | White fur | 458 (50.2) | 61 (57.5) | 519 (51.0) | 0.273 |
| Yellow fur | 431 (47.3) | 43 (40.6) | 474 (46.6) | 0.195 | |
| Few coating | 87 (6.8) | 5 (3.3) | 92 (6.4) | 0.098 | |
| Moist fur | 1223 (95.1) | 150 (98.7) | 1373 (95.5) | 0.044 | |
| Dry fur | 57 (4.4) | 2 (1.3) | 59 (4.1) | 0.067 | |
| Thin fur | 409 (31.8) | 59 (38.8) | 468 (32.5) | 0.081 | |
| Greasy fur | 638 (49.6) | 61 (40.1) | 699 (48.6) | 0.027 | |
| Pulse conditions [(n (%)] | Deep | 293 (22.8) | 27 (17.8) | 320 (22.3) | 0.159 |
| Intermittent | 64 (5) | 0 (0) | 64 (4.5) | 0.005 | |
| Slippery | 485 (37.7) | 60 (39.5) | 545 (37.9) | 0.672 | |
| Relaxed | 40 (3.1) | 0 (0) | 40 (2.8) | 0.027 | |
| Weak | 67 (5.2) | 3 (2) | 70 (4.9) | 0.080 | |
| Rapid | 140 (10.9) | 13 (8.6) | 153 (10.6) | 0.378 | |
| Thready | 333 (25.9) | 39 (25.7) | 372 (25.9) | 0.950 | |
| Wiry | 616 (47.9) | 93 (61.2) | 709 (49.3) | 0.002 | |
| Model | Accuracy | Sensitivity | Specificity | Precision | F-value | G-mean |
|---|---|---|---|---|---|---|
| GBM | 0.893 | 0.964 | 0.222 | 0.921 | 0.942 | 0.453 |
| XGBoost | 0.934 | 0.989 | 0.385 | 0.942 | 0.965 | 0.617 |
Table 2 Machine learning model evaluation in the testing set
| Model | Accuracy | Sensitivity | Specificity | Precision | F-value | G-mean |
|---|---|---|---|---|---|---|
| GBM | 0.893 | 0.964 | 0.222 | 0.921 | 0.942 | 0.453 |
| XGBoost | 0.934 | 0.989 | 0.385 | 0.942 | 0.965 | 0.617 |
| GBM-feature | GBM-importance | XGBoost-feature | XGBoost-importance | |
|---|---|---|---|---|
| DBP | 10.421 | DBP | 0.124 | |
| Hypertension | 7.510 | ≤60 years old | 0.095 | |
| Cerebral infarction | 6.238 | Heart rate | 0.09 | |
| SBP | 5.529 | SBP | 0.088 | |
| Chest congestion | 5.233 | Chest congestion | 0.063 | |
| ≤60 years old | 5.143 | Gender | 0.055 | |
| > 60 years old | 4.651 | >60 years old | 0.054 | |
| Smoking duration | 3.995 | Legs edema | 0.034 | |
| Heart rate | 3.980 | Old tongue | 0.032 | |
| Empty eyes | 3.295 | Constipation | 0.032 | |
| Constipation | 3.250 | Hypertension | 0.028 | |
| Temperature | 3.228 | Hypertension class Ⅲ | 0.028 | |
| Asthmatoid dyspnea | 2.581 | Cerebral infarction | 0.026 | |
| Atherosclerotic | 2.485 | Empty eyes | 0.024 | |
| Gender | 1.861 | Asthmatoid dyspnea | 0.024 |
Table 3 Feature importance scores for the prediction of MACE provide by GBM and XGBoost classifier
| GBM-feature | GBM-importance | XGBoost-feature | XGBoost-importance | |
|---|---|---|---|---|
| DBP | 10.421 | DBP | 0.124 | |
| Hypertension | 7.510 | ≤60 years old | 0.095 | |
| Cerebral infarction | 6.238 | Heart rate | 0.09 | |
| SBP | 5.529 | SBP | 0.088 | |
| Chest congestion | 5.233 | Chest congestion | 0.063 | |
| ≤60 years old | 5.143 | Gender | 0.055 | |
| > 60 years old | 4.651 | >60 years old | 0.054 | |
| Smoking duration | 3.995 | Legs edema | 0.034 | |
| Heart rate | 3.980 | Old tongue | 0.032 | |
| Empty eyes | 3.295 | Constipation | 0.032 | |
| Constipation | 3.250 | Hypertension | 0.028 | |
| Temperature | 3.228 | Hypertension class Ⅲ | 0.028 | |
| Asthmatoid dyspnea | 2.581 | Cerebral infarction | 0.026 | |
| Atherosclerotic | 2.485 | Empty eyes | 0.024 | |
| Gender | 1.861 | Asthmatoid dyspnea | 0.024 |
| Main symptoms | Western Medicine | Complication | TCM syndrome elements | Herbal materials |
|---|---|---|---|---|
| Chest congestion | diuretics, β receptor blockers, CCBs, ARBs | Wiry pulse, poor sleep | Blood stasis | Chuanxiong (Rhizoma Chuanxiong), Danggui (Radix Angelica Sinensis), Chishao (Radix Paeoniae Rubra) |
| Greasy fur, slippery pulse | Phlegm | Banxia (Rhizoma Pinelliae), Chenpi (Pericarpium Citri Reticulatae), Fuling (Poria) | ||
| Empty eyes, leg edema | Qi deficiency | Huangqi (Radix Astragali Mongolici), Dangshen (Radix Codonopsis), Baizhu (Rhizoma Atractylodis Macrocephalae) and Gancao (Radix Glycyrrhizae) | ||
| Empty eyes | diuretics, β-blockers, CCBs | Greasy fur, slippery pulse | Phlegm | Fuling (Poria), Chenpi (Pericarpium Citri Reticulatae) |
| Wiry pulse, chest congestion | Blood stasis | Chuanxiong (Rhizoma Chuanxiong), Danggui (Radix Angelica Sinensis), Chishao (Radix Paeoniae Rubra) | ||
| Fatigue, pale complexion, out of condition | Qi deficiency | Huangqi (Radix Astragali Mongolici), Dangshen (Radix Codonopsis), Gancao (Radix Glycyrrhizae) |
Table 4 Application rules of combined TCM and western medicine treatment on major adverse cardiovascular events and their target population
| Main symptoms | Western Medicine | Complication | TCM syndrome elements | Herbal materials |
|---|---|---|---|---|
| Chest congestion | diuretics, β receptor blockers, CCBs, ARBs | Wiry pulse, poor sleep | Blood stasis | Chuanxiong (Rhizoma Chuanxiong), Danggui (Radix Angelica Sinensis), Chishao (Radix Paeoniae Rubra) |
| Greasy fur, slippery pulse | Phlegm | Banxia (Rhizoma Pinelliae), Chenpi (Pericarpium Citri Reticulatae), Fuling (Poria) | ||
| Empty eyes, leg edema | Qi deficiency | Huangqi (Radix Astragali Mongolici), Dangshen (Radix Codonopsis), Baizhu (Rhizoma Atractylodis Macrocephalae) and Gancao (Radix Glycyrrhizae) | ||
| Empty eyes | diuretics, β-blockers, CCBs | Greasy fur, slippery pulse | Phlegm | Fuling (Poria), Chenpi (Pericarpium Citri Reticulatae) |
| Wiry pulse, chest congestion | Blood stasis | Chuanxiong (Rhizoma Chuanxiong), Danggui (Radix Angelica Sinensis), Chishao (Radix Paeoniae Rubra) | ||
| Fatigue, pale complexion, out of condition | Qi deficiency | Huangqi (Radix Astragali Mongolici), Dangshen (Radix Codonopsis), Gancao (Radix Glycyrrhizae) |
| 1. |
Li X, Li L, Lei W, et al. Traditional Chinese Medicine as a therapeutic option for cardiac fibrosis: pharmacology and mechanisms. Biomed Pharmacother 2021; 142: 111979.
DOI PMID |
| 2. | Wang SM, Ye LF, Wang LH. Traditional Chinese Medicine enhances myocardial metabolism during heart failure. Biomed Pharmacother 2022; 146: 112538. |
| 3. | Zhang L, Miao R, Yu T, et al. Comparative effectiveness of traditional Chinese medicine and angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and sodium glucose cotransporter inhibitors in patients with diabetic kidney disease: a systematic review and network Meta-analysis. Pharmacol Res 2022; 177: 106111. |
| 4. | Zhang Q, Wang ZF, Xie YM, et al. Technical specification for clinical comprehensive evaluation of Chinese patent medicine. Shi Jie Zhong Yi Yao 2021; 16: 3394-97+3403. |
| 5. | Caimei S, Binglin L, Feiran X, Ling H. Investigation and considerations about clinical position and effect evaluation system and criterion suited for Traditional Chinese Medicine. Zhong Guo Xin Yao Za Zhi 2021; 30: 898-901. |
| 6. | Wang X, Su X, Yu J, Xie Y, Wang Y. Clinical orientation and thought on several problems in post-marketed reassessment of Traditional Chinese Medicine. Zhong Guo Zhong Yao Za Zhi 2011; 36: 2893-97. |
| 7. | The Xinhua News Agency. Opinions of the Communist Party of China Central Committee and the State Counci on promoting the inheritance, innovation and development of Traditional Chinese Medicine. People's Daily, 2019-10-27 (001). |
| 8. | The General Office of the State Council. Notice on several policy measures to accelerate the development of Traditional Chinese Medicine characteristics issued by the General Office of the State Council, 2020-01-22, cited 2022-03-08. Available from URL: https://www.gov.cn/zhengce/content/2021-02/09/content_5586278.htm. |
| 9. | Dagenais S, Russo L, Madsen A, Webster J, Becnel L. Use of real world evidence to drive drug development strategy and inform clinical trial design. Clin Pharmacol Ther 2022; 111: 77-89. |
| 10. | General Office of the State Council. Notice of the general office of the state council on issuing the implementation plan for the major project of revitalizing and developing Traditional Chinese Medicine. Zhong Hua Ren Min Gong He Guo Guo Wu Yuan Gong Bao 2023; 8: 24-35. |
| 11. | Chen KY, Hang Q, Wu JH, Xu GL. Thoughts on the related isues of clinical evaluation of Traditional Chinese Medicine under new situations. Zhong Guo Zhong Yi Yao Xian Dai Yuan Cheng Jiao Yu 2019; 17: 150-4. |
| 12. | Liu DS. Research on rules of diagnosis and treatment of major adverse cardiova scular events in resistant hypertensio n based on real world study. Beijing: China Academy of Chinese Medical Sciences; 2020: 1-153. |
| 13. | Liu LS. 2010 Chinese guidelines for the management of hypertension. Zhong Hua Gao Xue Ya Za Zhi 2011; 19: 701-43. |
| 14. | Beijing Union Medical College Hospital World Health Organization International Classification Family Cooperation Center, Dong JW. The international statistical classification of diseases and related health problems: 10th Revision. Beijing: People's Health Publishing House, 2008: 36. |
| 15. | National Administration of Traditional Chinese Medicine, National Health Commission. Clinic terminology of traditional Chinese medical diagnosis and treatment Part 1: disease: GB/T 16751.1-2021. Beijing: Standards Press of China, 2020: 1-219 [2022-03-08]. http://www.natcm.gov.cn/yizhengsi/zhengcewenjian/2020-11-23/18461.html. |
| 16. | National Administration of Traditional Chinese Medicine, National Health Commission. Clinic terminology of traditional Chinese medical diagnosis and treatment Part 2: syndromes/patterns: GB/T 16751.2-2021. Beijing: Standards Press of China, 2020: 1-359 [2022-03-08]. http://www.natcm.gov.cn/yizhengsi/zhengcewenjian/2020-11-23/18461.html. |
| 17. | Zhu WF. Syndrome element differentiation. Beijing: People's Health Publishing House, 2008: 88. |
| 18. | National Medical Products Administration. Policy interpretation of the special provisions on the administration of Traditional Chinese Medicine registration. Zhong Guo Yi Yao Dao Kan 2023; 25: 226-8. |
| 19. | Ma SC, Wang Y, Wei F. Progress and exploration of quality control model of Traditional Chinese Medicine in the past decade. Zhong Guo Yao Xue Za Zhi 2023; 58: 2-9. |
| 20. | Han XJ, Shen SG. Current status and review of traditional Chinese Medicine research on hypertension. Zhong Guo Zhong Yi Ji Chu Yi Xue Za Zhi 2005; 11: 320. |
| 21. | Wu YC, Hsieh CL. Pharmacological effects of Radix Angelica Sinensis (Danggui) on cerebral infarction. Chin Med 2011; 6: 32. |
| 22. | Wu X, Li W, Luo Z, Chen Y. The molecular mechanism of Rhizoma Chuanxiong for improving idiopathic pulmonary fibrosis: a network pharmacology and molecular docking study. Medicine 2022; 101: e28787. |
| 23. | Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, chemical constituents, and pharmacological actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol 2020; 11: 1054. |
| 24. | Zhai Z, Tao X, Alami MM, Shu S, Wang X. Network pharmacology and molecular docking combined to analyze the molecular and pharmacological mechanism of Pinellia ternata in the treatment of hypertension. Curr Issues Mol Biol 2021; 43: 65-78. |
| 25. | Zou J, Wang J, Ye W, et al. Citri Reticulatae Pericarpium (Chenpi): a multi-efficacy pericarp in treating cardiovascular diseases. Biomed Pharmacother 2022; 154: 113626. |
| 26. | Nie AZ, Chao YH, Zhang XC, Jia WR, Zhou Z, Zhu CS. Phytochemistry and pharmacological activities of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb. Front Pharmacol 2020; 11: 505249. |
| 27. | Tan YQ, Chen HW, Li J. Astragaloside IV: an effective drug for the treatment of cardiovascular diseases. Drug Des Devel Ther 2020; 14: 3731-46. |
| 28. | Zhang JL, Zhang QQ, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur J Pharmacol 2019; 864: 172710. |
| 29. | Lin JG, Wang QQ, Xu SY, et al. Banxia baizhu tianma decoction, a Chinese herbal formula, for hypertension: integrating Meta-analysis and network pharmacology. Front Pharmacol 2022; 13: 1025104. |
| 30. | Yang W, Tang JF, Yi DH, et al. GBM propensity score weighting for causal inference research. Shi Jie Ke Xue Ji Shu-Zhong Yi Yao Xian Dai Hua 2017; 19: 1462-72. |
| 31. | Qi QN, Liu Y, Chen JH, et al. Research progress on machine learning XGBoost algorithm in medicine. Fen Zi Ying Xiang Xue Za Zhi 2021; 44: 856-62. |
| 32. |
Grimberg F, Asprion PM, Schneider B, Miho E, Babrak L, Habbabeh A. The real-world data challenges radar: a review on the challenges and risks regarding the use of real-world data. Digit Biomark 2021; 5: 148-57.
DOI PMID |
| 33. | Yang W, Yi D, Zhou XH, et al. Translational analysis of data science and causal learning in real-world clinical evaluation of Traditional Chinese Medicine. Sci Trad Chin Med 2024; 2: 57-65. |
| [1] | WANG Bochuan, ZHANG Yong, ZHANG Qiuyun, ZHANG Zhiqiang, LUO Changyong, WANG Zhendong, BAI Chen, WANG Yuhan, GE Xueyi, QIAN Ying, YU He, GU Xiaohong. Reveal the mechanisms of prescriptions for liver cancer' treatment based on two illustrious senior TCM physicians [J]. Journal of Traditional Chinese Medicine, 2023, 43(1): 188-197. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Sponsored by China Association of Chinese Medicine
& China Academy of Chinese Medical Sciences
16 Nanxiaojie, Dongzhimen Nei, Beijing, China. 100700 Email: jtcmen@126.com
Copyright 2020 Journal of Traditional Chinese Medicine. All rights reserved.
